Section outline

    • Digitale OER Materialien in der Stochastik-Lehre für Präsenzveranstaltungen und Selbststudium

    • Inhalt des Kurses

      Dieser unbetreute Online-Kurs enthält digitale Materialien für den Hochschulbereich aus dem Themenbereich Stochastik.

      Die Materialien eignen sich sowohl für das Selbststudium als auch für den Einsatz in Lehrveranstaltungen, etwa zur Vor- oder Nachbereitung von Lehrveranstaltungen oder zur Vorbereitung auf Prüfungen. Im Einzelnen enthält der Kurs Erklärvideos zu ausgewählten Themen der Stochastik, interaktive Anwendungen für den Einsatz in Vorlesungen sowie für die individuelle Nacharbeit der Studierenden und mit dem Fragetyp STACK erstellte offene, automatisch auswertbare Aufgaben mit individuellem Feedback.

      In jedem Kursabschnitt finden Sie die zu einem inhaltlichen Themenbereich gehörigen Lernmaterialien. Ganz oben ist dort jeweils auch ein Ordner mit weiteren Materialien wie Handreichungen, Untertiteldateien und Quelldateien zu finden. Dort können auch die STACK-Aufgaben als Moodle-XML-Dateien heruntergeladen werden.

      Weitere Informationen finden Sie auch in der rechten ausklappbaren Spalte.

    • Anmeldung

      Um die digitalen Aufgaben in diesem Kurs zu bearbeiten, müssen Sie sich zunächst anmelden. RUB-Angehörige können dies mit Ihrer LoginID tun. Externe Nutzer*innen müssen sich zunächst registrieren: Neues Nutzerkonto | RUB Moodle (ruhr-uni-bochum.de)


    • Als Dozent:in finden Sie hier zusätzliches Material zum Einsatz und zur Weiterentwicklung aller Materialien aus dem Projekt.

    • Dieses Video vermittelt einen Überblick über die Materialien des Projekts.

    • Als Dozent:in finden Sie hier zusätzliches Material zum Themenpaket "Grundbegriffe".

    • Am Beispiel der Farbverteilung von Schokolinsen wird der Begriff der Zufallsvariablen eingeführt.

    • Am Beispiel des zweifachen Würfelwurfs werden grundlegende Begriffe der Wahrscheinlichkeitstheorie eingeführt.

    • Diese interaktive Anwendung stellt zwei stochastische Gesetzmäßigkeiten vor. Zum einen werden verschiedene Aspekte des Gesetzes der großen Zahlen erkundet und zum anderen der Grenzwertsatz, der die Basis für den Chi-Quadrat-Test bildet.

    • Das Bertrand-Paradoxon kann durch verschiedene Konstruktionsmöglichkeiten der Kreissehne interaktiv erkundet werden. Beobachtungsaufträge leiten die Erkundung an. Mathematische Erklärungen der jeweiligen geometrischen Wahrscheinlichkeiten regen zum Nachdenken über die Frage nach dem zugrunde liegenden stochastischen Modell an.

    • In der ersten Teilaufgabe ist der Ergebnisraum eines Zufallsexperiments gesucht. In der zweiten Teilaufgabe soll ein Ereignis als Menge angegeben werden. In der dritten Teilaufgabe ist die Wahrscheinlichkeit gesucht, dass das Ereignis eintritt.

    • Als Dozent:in finden Sie hier zusätzliches Material zum Themenpaket "Kombinatorik".

    • In diesem Video werden die vier kombinatorischen Grundformeln eingeführt und ein Überblick gegeben. Das Fundamentalprinzip des Zählens wird besprochen und die erste Grundformel für Ziehen mit Zurücklegen unter Beachtung der Reihenfolge wird vorgestellt.

    • In diesem Video werden die zweite und dritte kombinatorische Grundfigur / - formel besprochen. Das Ziehen ohne Zurücklegen mit beziehungsweise ohne Beachtung der Reihenfolge werden ausführlich motiviert und mit Anwendungsbeispielen verdeutlicht.

    • In diesem dritten Video zur Kombinatorik wird die vierte kombinatorische Grundfigur / - formel thematisiert, das Ziehen mit Zurücklegen ohne Beachtung der Reihenfolge. Der Übergang zum äquivalenten Kästchenmodell wird besprochen und Anwendungsbeispiele verdeutlichen diese letzte Grundformel.

    • Der Unterschied zwischen den Dichten von hypergeometrischer Verteilung und Binomialverteilung kann für verschiedene Kombinationen ihrer Parameter interaktiv erkundet werden. Ein Beobachtungsauftrag leitet die eigenständige Erkundung der Grafik an. Werden beide Verteilungen als Modelle für das Ziehen von Kugeln mit oder ohne Zurücklegen interpretiert, kann bei festem Mischungsverhältnis der Kugeln die immer deutlichere Annäherung beider Modelle beobachtet werden. Der Beweis der entsprechenden Grenzwertaussage liefert eine mathematische Erklärung für die beobachteten Zusammenhänge.

    • In dieser Aufgabe lösen die Studierenden das Geburtstagsproblem.

    • In dieser Aufgabe lösen die Studierenden ein kombinatorisches Problem, in dem es um die Verteilung von Gepäckstücken auf Zugabteile geht.

    • Die hypergeometrische Verteilung wird in einem Beispiel eingesetzt.

    • Die Anwendung der verschiedenen kombinatorischen Grundformeln wird an einem weiteren Beispiel veranschaulicht.

    • Es wird die Verwendung einfacher kombinatorischer Formeln demonstriert.

    • Es wird die Verwendung einfacher kombinatorischer Formeln demonstriert.

    • Die Anwendung der verschiedenen kombinatorischen Grundformeln wird an einem Beispiel veranschaulicht.

    • Die Anwendung des Laplace-Modells wird an einem einfachen Beispiel illustriert.

    • Die Anwendung der verschiedenen kombinatorischen Grundformeln und des Laplace-Modells wird an einem Beispiel veranschaulicht.

    • Die Anwendung der verschiedenen kombinatorischen Grundformeln wird an einem Beispiel veranschaulicht.

    • Die Anwendung der verschiedenen kombinatorischen Grundformeln wird an einem Beispiel veranschaulicht.

    • Die Anwendung der Binomialverteilung wird an einem Beispiel illustriert.

    • In der Aufgabe sollen die Studierenden verschiedene kombinatorische Fragestellungen, die beim Befüllen eines Apothekerschranks auftreten, aus der Sicht eines Urnenmodells oder eines Fächermodells betrachten und mithilfe eines passenden kombinatorischen Modells lösen.

    • In der Aufgabe sollen die Studierenden verschiedene Gewinn- und Verlustwahrscheinlichkeiten für das Lottospiel 6aus49 berechnen. Dazu wird die Modellierung mit einem kombinatorischen Modell und der hypergeometrischen Verteilung schrittweise aufgebaut. Weiterführende Aufgabenteile berücksichtigen zusätzlich die Ziehung der Superzahl und das Lottospiel mit System.

    • Als Dozent:in finden Sie hier zusätzliches Material zum Themenpaket "Bedingte Wahrscheinlichkeiten und Unabhängigkeit".

    • In diesem Video wird der Zusammenhang zwischen Baumdiagrammen und Wahrscheinlichkeitsräumen erklärt. Es wird darauf eingegangen, wie man diskrete Verteilungen mithilfe von Baumdiagrammen darstellen kann und wie Baumdiagramme zur Lösung kombinatorischer Probleme beitragen können.

    • Anhand eines anschaulichen Beispiels wird der Begriff der bedingten Wahrscheinlichkeit motiviert und die definierende Formel heuristisch hergeleitet. Durch ein Rechenbeispiel wird deutlich, dass klar zwischen dem bedingenden und dem interessierenden Ereignis unterschieden werden muss. Die Verbindung zu zweistufigen Zufallsprozessen und Baumdiagrammen wird hergestellt.

    • Die Formel der totalen Wahrscheinlichkeit und der Satz von Bayes werden an Rechenbeispielen illustriert. Anschließend werden beide Formeln mathematisch präzise formuliert.

    • Anhand eines Rechenbeispiels werden die Begriffe Sensitivität, Spezifität und Prävalenz erklärt und Formeln für den positiven und den negativen prädiktiven Wert heuristisch hergeleitet. Die Interpretation und Bedeutung prädiktiver Werte in der medizinischen Diagnostik wird hervorgehoben. Die mathematischen Abhängigkeiten der prädiktiven Werte von der Sensitivität, Spezifität und Prävalenz werden grafisch diskutiert.

    • In dieser interaktiven Anwendung werden die erste und zweite Pfadregel in Baumdiagrammen und der Satz von der totalen Wahrscheinlichkeit behandelt.

    • In dieser interaktiven Anwendung wird der Satz von Bayes besprochen und auf bedingte Wahrscheinlichkeiten eingegangen. Die Sensitivität und Spezifität diagnostischer Tests in der Medizin dient als Anwendungsbeispiel.

    • Die Werte von Sensitivität, Spezifität und Prävalenz können interaktiv verändert werden, um ihre Auswirkungen auf den positiven und den negativen prädiktiven Wert sichtbar zu machen. Ausführliche Rechnungen mit dem Satz von Bayes bieten eine mathematische Erklärung der beobachteten Zusammenhänge.

    • Das Ziegenproblem kann interaktiv in ein Baumdiagramm übertragen werden. In anschließenden Arbeitsaufträgen mit ausführlichen Erklärungen werden die Gewinnwahrscheinlichkeiten für verschiedene Spielstrategien berechnet und verglichen.

    • In dieser Aufgabe wird die Verwendung eines Baumdiagramms zur Lösung kombinatorischer Fragestellungen demonstriert. Erst sollen die einzelnen Wahrscheinlichkeiten im Baumdiagramm bestimmt werden. Dann sollen die erste und die zweite Pfadregel angewendet werden.

    • In dieser Aufgabe sollen mithilfe einer Vierfeldertafel für Wahrscheinlichkeiten zwei verschiedene bedingte Wahrscheinlichkeiten berechnet werden.

    • In einer Vierfeldertafel sollen mithilfe einiger bedingter Wahrscheinlichkeiten die fehlenden Einträge bestimmt werden.

    • In der Aufgabe sollen die Studierenden zuerst den in der Aufgabenstellung gegebenen Sachkontext in bedingte Wahrscheinlichkeiten übertragen. Anschließend sollen sie zwei verschiedene bedingte Wahrscheinlichkeiten mit dem Satz von Bayes berechnen.

    • In der Aufgabe werden zufällige Werte von Sensitivität, Spezifität und Prävalenz generiert. Die Studierenden sollen dann Größen berechnen, die bei diagnostischen Testverfahren häufig Verwendung finden, wie die Falsch-Positiv-Rate, die Falscherkennungsrate oder prädiktive Werte. Dabei wird das Rechnen mit dem Satz von Bayes eingeübt.

    • In der Aufgabe sollen die Studierenden zuerst den in der Aufgabenstellung gegebenen Sachkontext in bedingte Wahrscheinlichkeiten übertragen. Anschließend sollen sie eine Wahrscheinlichkeit mit der Formel der totalen Wahrscheinlichkeit berechnen.

    • In der Aufgabe sollen die Studierenden zuerst das in der Aufgabenstellung formulierte Ziegenproblem in ein Baumdiagramm übertragen. Anschließend sollen sie mit dem Multiplikationssatz eine allgemeine Formel für die Gewinnwahrscheinlichkeit in Abhängigkeit von der Spielstrategie herleiten. Schließlich sollen sie verschiedene Spielstrategien miteinander vergleichen und die beste Spielstrategie bestimmen.

    • In der Aufgabe sollen die Studierenden in einem endlichen Laplace-Raum Beispiele für drei nichtleere Ereignisse angeben, die die Definition der Unabhängigkeit von Ereignissen nur in Teilen erfüllen. Außerdem sollen sie ein Gegenbeispiel angeben, das zeigt, dass die Unabhängigkeit von Ereignissen nicht transitiv ist.

    • In der Aufgabe wird zufällig eine bivariate Zähldichte generiert. Die Studierenden sollen dann die Randdichten der Projektionsabbildungen und die Dichte des Produktmaßes berechnen. Basierend darauf sollen sie entscheiden, ob die Zufallsvariablen unabhängig sind oder nicht.

    • In der Aufgabe wird zufällig eine bivariate Dichtefunktion generiert. Die Studierenden sollen dann die Randdichten der Projektionsabbildungen und die Dichte des Produktmaßes berechnen. Basierend darauf sollen sie entscheiden, ob die Zufallsvariablen unabhängig sind oder nicht.

    • Als Dozent:in finden Sie hier zusätzliches Material zum Themenpaket "Diskrete Verteilungen".

    • Anhand eines anschaulichen Beispiels wird das Konvergenzverhalten der Binomialverteilung gegen die Poisson-Verteilung motiviert. Der Poissonsche Grenzwertsatz wird mathematisch präzise formuliert, jedoch nicht bewiesen. Die Poisson-Approximation wird erklärt und mit einem Rechenbeispiel sowie grafisch illustriert.

    • Die Begriffe Erwartungswert und Varianz werden motiviert und die definierenden Formeln grafisch erklärt. Das Video behandelt dabei nur den diskreten Fall. Die Rechenregeln für Erwartungswert und Varianz unter Verschiebung bzw. Skalierung der Zufallsvariablen werden sowohl grafisch visualisiert als auch rechnerisch hergeleitet.

    • Für verschiedene Kombinationen ihrer Parameter kann der Unterschied zwischen den Dichten von Binomial- und Poisson-Verteilung interaktiv erkundet werden. Ein Beobachtungsauftrag leitet die eigenständige Erkundung der Grafik an. Der Beweis des Poissonschen Grenzwertsatzes liefert eine mathematische Erklärung für die beobachteten Zusammenhänge.

    • Bei der Binomialverteilung wird in Abhängigkeit vom auf der horizontalen Achse eingestellten Wert \(a\) die gewichtete Summe der quadratischen Abweichungen von \(a\) als Maß für die Streuung visualisiert. Wird für \(a\) exakt der Erwartungswert eingestellt, wird die Streuung minimal. Dies motiviert die Definition der Varianz als mittlere quadratische Abweichung vom Erwartungswert.

    • In dieser interaktiven Anwendung verändern die Studierenden den Parameter einer geometrisch verteilten Zufallsvariablen und beobachten die resultierenden Veränderungen ihrer Wahrscheinlichkeitsfunktion, des Erwartungswerts und der Varianz.

    • In dieser Aufgabe soll mithilfe der Binomialverteilung eine Wahrscheinlichkeit berechnet und der Erwartungswert sowie die Varianz einer binomialverteilten Zufallsvariablen angegeben werden.

    • In dieser Aufgabe sollen zwei Wahrscheinlichkeiten berechnet und der Erwartungswert sowie die Varianz einer Zufallsvariablen angegeben werden. Die Aufgabe kann sowohl mit der Binomial- als auch mit der Poisson-Verteilung gelöst werden.

    • In dieser Aufgabe soll mithilfe der Poisson-Verteilung eine Wahrscheinlichkeit berechnet werden.

    • In dieser Aufgabe soll mithilfe der Binomialverteilung eine Wahrscheinlichkeit berechnet und der Erwartungswert sowie die Varianz einer binomialverteilten Zufallsvariablen angegeben werden.

    • In dieser Aufgabe geht es um die Modellierung von Daten mit der Poisson-Verteilung. Dabei sind Schätzwerte für den Parameter der Verteilung, den Erwartungswert sowie die Varianz der Verteilung und für eine Wahrscheinlichkeit gesucht.

    • Diese Aufgabe ist ähnlich der Aufgabe "Verkehrstote (diskrete Zufallsvariablen)". Die Besonderheit ist hier, dass die Studierenden zu Beginn der Aufgabe selbst Daten recherchieren sollen.

    • In dieser Aufgabe soll mithilfe der geometrischen Verteilung eine Wahrscheinlichkeit berechnet und der Erwartungswert sowie die Varianz einer geometrisch verteilten Zufallsvariablen angegeben werden.

    • In dieser Aufgabe geht es um zwei diskrete Zufallsvariablen \(X, Y\) und ihre gemeinsame Verteilung. Nacheinander sollen die marginalen Wahrscheinlichkeitsfunktionen, die Wahrscheinlichkeitsfunktion von \(X+Y\), der Erwartungswert sowie die Varianz beider Zufallsvariablen, ihre Kovarianz und ihr Korrelationskoeffizient angegeben werden. Zuletzt soll entschieden werden, ob die Zufallsvariablen unabhängig sind.

    • In dieser Aufgabe geht es um einen unfairen Würfel. Zunächst sollen die Wahrscheinlichkeiten, dass die Zahlen 1 bis 6 gewürfelt werden, so bestimmt werden, dass der Würfel bestimmte Eigenschaften erfüllt. Anschließend soll durch das Durchführen eines Zufallsexperiments ein Schätzwert empirisch ermittelt werden.

    • In der Aufgabe sollen die Studierenden eine Binomial-Wahrscheinlichkeit zuerst exakt berechnen und anschließend mit der Poisson-Approximation approximativ berechnen. Außerdem wird die Größenordnung des Approximationsfehlers abgefragt. Nachdem die Aufgabe richtig gelöst wurde, können die Studierenden mit einer interaktiven Anwendung erkunden, wie sich der Approximationsfehler ändert, wenn die Parameter \(n\) und \(p\) der Binomialverteilung verändert werden.

    • In der Aufgabe sollen die Studierenden eine Binomial-Wahrscheinlichkeit mithilfe der Chebychev-Ungleichung nach unten abschätzen. Zuerst identifizieren sie die Binomialverteilung als korrekte Modellierung des Sachkontextes und berechnen deren Erwartungswert und Varianz. Anschließend formen Sie das Ereignis auf die Form der Chebychev-Ungleichung um und wenden diese zur Abschätzung der Wahrscheinlichkeit an.

    • Die Wahrscheinlichkeiten von Elementarereignissen sollen bei Kenntnis der Wahrscheinlichkeiten anderer Ereignisse bestimmt werden.

    • In dieser Aufgabe sind zwei unabhängige, diskrete Zufallsvariablen gegeben. Nachdem die Studierenden die gemeinsame Verteilung dieser Zufallsvariablen bestimmt haben, wird nach der Verteilung der Summe und nach der Verteilung des Maximums gefragt. Im letzten Aufgabenteil soll der Korrelationskoeffizient angegeben werden.

    • Als Dozent:in finden Sie hier zusätzliches Material zum Themenpaket "Stetige Verteilungen".

    • Am Beispiel der Verteilung des Gewichts von Schokolinsen wird der Begriff der stetigen Zufallsvariablen eingeführt.

    • In diesem Video wird eine Einführung zu Mengensystemen und Wahrscheinlichkeitsräumen gegeben. Es wird motiviert, wieso die Maßtheorie nötig ist, um realistische Probleme stochastisch zu modellieren. Elementare Objekte der Stochastik wie Zufallsvariablen, Mess- und Wahrscheinlichkeitsräume sowie Sigma-Algebren werden motiviert. Die Notwendigkeit der Konstruktion der Borel-Sigma-Algebra wird thematisiert und Anwendungsbeispiele vertiefen die Inhalte.

    • Die Parameter der Normalverteilung können interaktiv verändert werden, um die Auswirkungen auf die Form der Dichtefunktion sowie den Erwartungswert und die Varianz zu erkunden. Beobachtungsaufträge leiten die eigenständige Erkundung der Grafik an. Ausführliche Berechnungen von Erwartungswert und Varianz liefern eine mathematische Erklärung der beobachteten Zusammenhänge.

    • Die Parameter der Gumbel-Verteilung können interaktiv verändert werden, um die Auswirkungen auf die Form der Dichtefunktion sowie den Erwartungswert und die Varianz zu erkunden. Beobachtungsaufträge leiten die eigenständige Erkundung der Grafik an. Ausführliche Berechnungen von Erwartungswert und Varianz liefern eine mathematische Erklärung der beobachteten Zusammenhänge.

    • Die Parameter der Weibull-Verteilung können interaktiv verändert werden, um die Auswirkungen auf die Form der Dichtefunktion sowie den Erwartungswert und die Varianz zu erkunden. Beobachtungsaufträge leiten die eigenständige Erkundung der Grafik an. Ausführliche Berechnungen von Erwartungswert und Varianz liefern eine mathematische Erklärung der beobachteten Zusammenhänge.

    • In dieser Aufgabe geht es um eine Funktion \(f\), die auf einem gegebenen Intervall die Funktionswerte einer unbekannten Funktion \(g\) und sonst den Wert \(0\) annimmt. Die Studierenden sollen ein Beispiel für eine Funktion \(g\) angeben, sodass \(f\) die Eigenschaften einer Dichtefunktion erfüllt.

    • Bei einer Funktion sollen die Axiome einer Wahrscheinlichkeitsdichte, vor allem aber die Normierung, überprüft werden.

    • In dieser Aufgabe soll gezeigt werden, dass es sich bei einer gegebenen Funktion um eine Wahrscheinlichkeitsdichte handelt, und der Wert der Verteilungsfunktion an einer bestimmten Stelle soll berechnet werden.

    • Es soll die Verteilungsfunktion einer Zufallsvariablen bestimmt werden, die durch Anwendung einer Funktion auf eine Zufallsvariable mit bekannter Verteilung entsteht.

    • In der Aufgabe wird zufällig eine Dichtefunktion generiert, die eine Exponential-, Erlang- oder Chi-Quadrat-Verteilung beschreibt. Die Studierenden sollen Erwartungswert, zweites Moment und Varianz einer Zufallsvariablen mit dieser Dichtefunktion berechnen.

    • Die Lebensdauer eines Fahrradschlauchs wird durch eine Zufallsvariable mit Dichtefunktion modelliert. Es sollen die Wahrscheinlichkeit, dass die Lebensdauer einen gegebenen Wert überschreitet, und der Erwartungswert berechnet werden.

    • Eine Fahrradlampe setzt sich aus vier LEDs zusammen, deren Lebensdauer als unabhängige, exponentialverteilte Zufallsvariable modelliert wird. Im ersten Aufgabenteil soll die Wahrscheinlichkeit bestimmt werden, dass die Lebensdauer einer einzelnen LED eine vorgegebene Grenze überschreitet. Im zweiten Aufgabenteil wird die Lebensdauer der gesamten Fahrradlampe untersucht. Es soll hier ebenfalls eine Überschreitungswahrscheinlichkeit ausgerechnet werden.

    • Der Wasserstand der Ruhr in Hattingen wird durch eine Zufallvariable mit stetiger Verteilung modelliert. Die Studierenden sollen die Wahrscheinlichkeit, dass ein bestimmter Pegel überschritten wird, mithilfe der Verteilungsfunktion bestimmen. In einem zweiten Aufgabenteil wird nach der Verteilungsfunktion einer Transformierten dieser Zufallsvariablen gefragt.

    • Das Gewicht eines zufällig ausgewählten Müsliriegels ist durch eine normalverteilte Zufallsvariable mit gegebenem Erwartungswert und gegebener Varianz modelliert. Es wird nach der Wahrscheinlichkeit gefragt, dass der Müsliriegel ein vorgegebenes Gewicht unterschreitet.

    • Das Gewicht eines zufällig ausgewählten Müsliriegels ist durch eine normalverteilte Zufallsvariable mit gegebenem Erwartungswert und gegebener Varianz modelliert. Die Müsliriegel werden in 4er Packungen verkauft. Die Studierenden sollen den Erwartungswert und die Varianz des Gesamtgewichts einer solchen Packung berechnen. Im zweiten Aufgabenteil soll der Erwartungswert und die Varianz des arithmetischen Mittels der Riegel in einer Packung berechnet werden.

    • Als Dozent:in finden Sie hier zusätzliches Material zum Themenpaket "Zentraler Grenzwertsatz und Normalapproximation".

    • Ausgehend von Beobachtungen beim Galtonbrett wird das Verhalten der Binomialverteilung für wachsendes \(n\) untersucht. Die Auswirkungen von Zentrierung und Standardisierung auf die Dichte und die Verteilungsfunktion werden grafisch dargestellt. Schließlich wird der zentrale Grenzwertsatz von de Moivre-Laplace mathematisch präzise formuliert, jedoch nicht bewiesen. Die Gültigkeit der Aussage auch ohne eine konkrete Verteilungsannahme wird diskutiert.

    • Ein interaktives Galtonbrett illustriert den zentralen Grenzwertsatz von de Moivre-Laplace, da sich annähernd eine Normalverteilung einstellt. Ein interaktives Kapteynbrett, eine multiplikative Version des Galtonbretts, ergibt stattdessen eine Annäherung an eine Log-Normalverteilung. In Arbeitsaufträgen sollen die Beobachtungen mathematisch modelliert und mit dem zentralen Grenzwertsatz erklärt werden.

    • Für verschiedene Kombinationen ihrer Parameter kann der Unterschied zwischen den Dichten von Binomial- und Normalverteilung interaktiv erkundet werden. Ebenso kann die Genauigkeit der Normalapproximation (mit und ohne Stetigkeitskorrektur) anhand der Verteilungsfunktionen von standardisierter Binomialverteilung und Standardnormalverteilung erkundet werden. Ein Beobachtungsauftrag leitet die eigenständige Erkundung der Grafiken an. Der zentrale Grenzwertsatz liefert eine mathematische Erklärung für die beobachteten Zusammenhänge.

    • In der Aufgabe sollen die Studierenden eine Binomial-Wahrscheinlichkeit zuerst exakt berechnen und anschließend mit der Normalapproximation approximativ berechnen. Die Normalapproximation soll einmal mit und einmal ohne Stetigkeitskorrektur durchgeführt werden.

    • In der Aufgabe sollen die Studierenden berechnen, mit welcher Wahrscheinlichkeit eine normalverteilte Zufallsvariable um ein Vielfaches der Standardabweichung von ihrem Erwartungswert abweicht. Anschließend soll dieselbe Fragestellung für das arithmetische Mittel von normalverteilten Zufallsvariablen untersucht werden.

    • Fluglinien verkaufen oft mehr Tickets für einen Flug, als es Plätze im Flugzeug gibt. Die Anzahl der zum Abflug erscheinenden Passagiere wird als Realisierung einer binomialverteilten Zufallsvariablen modelliert. In dieser Aufgabe soll mithilfe der Normalapproximation die Überbuchungswahrscheinlichkeit für einen Transatlantikflug berechnet werden.

    • Als Dozent:in finden Sie hier zusätzliches Material zum Themenpaket "Statistik".

    • Am Beispiel der Verteilung des Gewichts von Schokolinsen werden das Histogramm und die empirische Verteilungsfunktion eingeführt.

    • In dieser interaktiven Anwendung können die Studierenden den Einfluss der Klassenbreite auf das Histogramm untersuchen. Dabei können ein voreingestellter Datensatz, eigene Datensätze oder zufällig erzeugte Datensätze verwendet werden.

    • In dieser interaktiven Anwendung würfeln die Studierenden digital mit einem sechsseitigen fairen Würfel. Der Fokus liegt auf dem Vergleich verschiedener Darstellungs- bzw. Visualisierungsformen des durch mehrfaches Würfeln entstehenden Datensatzes, der die Ergebnisse der Durchführungen enthält.

    • In dieser interaktiven Anwendung wird die Residuenquadratsumme als Maß für die Güte eines Regressionsmodells thematisiert. Zudem erkunden die Studierenden, welche Auswirkungen die Veränderung von Daten auf ein angepasstes Modell haben kann.

    • In dieser interaktiven Anwendung werden jeweils zwei verschiedene Schätzer für den Erwartungswert und die Varianz normalverteilter Daten diskutiert. Um die Verteilung dieser Schätzer zu veranschaulichen, können Daten mit verschiedenen Parametern simuliert werden.

    • In dieser interaktiven Anwendung werden jeweils zwei verschiedene Schätzer für den Erwartungswert und die Varianz normalverteilter Daten diskutiert. Die Schätzer können dann in Hinblick auf die Kenngrößen MSE und Bias verglichen werden. Dazu kann der Prozess der Stichprobenziehung mit verschiedenen Parametern simuliert werden.

    • Diese Anwendung behandelt die Grundlagen der Testtheorie im Sachkontext der Qualitätskontrolle. Es werden die beiden Begriffe Fehler 1. Art und Fehler 2. Art anhand zweier unterschiedlicher Testverfahren thematisiert. Es wird zunächst ein naives Testverfahren vorgeschlagen und danach der Binomialtest untersucht.

    • In dieser Aufgabe ist eine Grafik mit einem Boxplot gegeben. Die Studierenden sollen einen Datensatz angeben, der zum gegebenen Boxplot passt.

    • In dieser Aufgabe sollen die Studierenden eine empirische Verteilungsfunktion aus einem gegebenen Datensatz zeichnen, indem sie in einer Grafik Punkte platzieren.

    • In dieser Aufgabe berechnen die Studierenden aus gegebenen Datenpunkten Schritt für Schritt eine Regressionsgerade nach der Kleinste-Quadrate-Methode. Dazu füllen sie sukzessive eine Tabelle aus, berechnen die Spaltensummen und bestimmen schließlich den Korrelationskoeffizienten sowie die Parameter der Regressiongeraden.

    • In der ersten Teilaufgabe ist der Scatterplot eines Datensatzes gegeben und es soll zu einem \(x\)-Wert, zu dem kein Datenpunkt existiert, ein passender \(y\)-Wert geschätzt werden, sodass sich der resultierende Punkt plausibel in die Punktwolke einfügt. Im zweiten Aufgabenteil soll aus bereits gegebenen Kenngrößen eine Regressionsgerade nach der Kleinste-Quadrate-Methode bestimmt werden. In der dritten Teilaufgabe soll der zuvor geschätzte \(y\)-Wert mithilfe der Geradengleichung rechnerisch bestimmt werden.

    • In dieser Aufgabe wird die jährliche Anzahl der Verkehrstoten in der Stadt Bochum als Realisierung einer Poisson-verteilten Zufallsvariablen modelliert. Aus Daten von 12 aufeinanderfolgenden Jahren soll der Maximum-Likelihood Schätzer sowie ein Konfidenzintervall für den unbekannten Parameter der Poisson-Verteilung bestimmt werden. Die Studierenden werden schrittweise an die Berechnung des ML-Schätzers herangeführt.

    • Mitarbeiter:innen eines Lehrstuhls haben ein Stichprobe von Schokolinsenpackungen gewogen. Wir modellieren das Gewicht durch eine normalverteilte Zufallsvariable mit unbekanntem Erwartungswert und unbekannter Varianz. In dieser Aufgabe wird nach einem Konfidenzintervall für den Erwartungswert und für die Varianz gefragt. Außerdem wird eine Verständnisfrage zu Konfidenzintervallen im Allgemeinen gestellt.

    • In dieser Aufgabe wird eine typische Fragestellung aus der Qualitätskontrolle vorgestellt. Die Studierenden untersuchen in dieser Aufgabe das Verfahren mithilfe des Binomialtests. In den fünf Aufgabenteilen werden die Studierenden nach dem statistischen Modell, nach dem Fehler 1. Art, nach der Macht und dem p-Wert gefragt. Außerdem sollen sie eine geeignete Hypothese und Alternative für das vorgestellte Verfahren formulieren.

    • Anhand einer IQ-Stichprobe soll den Studierenden ein möglicher Anwendungsfall für den Gaußtest vorgestellt werden. In vier Aufgabenteilen leitet die Aufgabe durch die Vorgehensweise bei diesem Test.

    • In dieser Aufgabe soll ein F-Test zum Vergleich von Varianzen von Fahrzeiten durchgeführt werden. Es wurden in zwei verschiedenen Monaten im Jahr Fahrzeiten mit dem Rad für eine Strecke von Wohnung zur Universität ermittelt. Den Studierenden werden die Kennzahlen Mittelwert und Stichprobenvarianz für die zwei Stichproben präsentiert. Es soll die Hypothese, dass die beiden Varianzen gleich sind, gegen die Alternative, dass die Varianz in einem Monat größer war, getestet werden.

    • In dieser Aufgabe soll ein t-Test zum Vergleich von Erwartungswerten von Fahrzeiten durchgeführt werden. Es wurden in zwei verschiedenen Monaten im Jahr Fahrzeiten mit dem Rad für eine Strecke von Wohnung zur Universität ermittelt. Den Studierenden werden die Kennzahlen Mittelwert und Stichprobenvarianz für die zwei Stichproben präsentiert. Es soll die Hypothese, dass die beiden Erwartungswerte gleich sind, gegen die Alternative, dass der Erwartungswert in einem Monat größer war, getestet werden.

    • Im Zentrum dieser Aufgabe steht eine Behauptung über die Farbverteilung von Schokolinsen. Den Studierenden wird ein Datensatz von 180 Packungen präsentiert. Mithilfe des Chi-Quadrat-Tests sollen die Studierenden entscheiden, ob die Daten die behauptete Farbverteilung stützen. Die Studierenden werden schrittweise durch dieses Vorhaben geleitet.

    • Den Studierenden wird ein Datensatz eines Würfelexperiments präsentiert. Mithilfe eines geeigneten statistischen Tests und dieses Datensatzes sollen die Studierenden entscheiden, ob der Würfel fair ist. Die Studierenden werden schrittweise durch dieses Vorhaben geleitet.

    • Professor D. hat den Energieverbrauch seines Hauses in Abhängigkeit der Außentemperatur gemessen. Den Studierenden werden in dieser Aufgabe die arithmetischen Mittel, die empirischen Standardabweichungen sowie der Korrelationskoeffizient für diesen Datensatz gegeben. Die Daten sollen nun mithilfe der linearen Regression untersucht werden. In sieben Aufgabenteilen sollen die Kleinste-Quadrate Regressionsgerade bestimmt werden, eine Vorhersage für den Energieverbrauch gemacht werden, eine Schätzung für die Varianz des Zufallsterms im Modell gegeben werden, 95%-Konfidenzintervalle für die Steigung, den y-Achsenabschnitt und die Varianz des Zufallsterms angegeben werden und die Hypothese, dass die Außentemperatur keinen Einfluss auf den Energieverbrauch hat, getestet werden.