Enrolment options

GOALS:

Stu­dents learn the theo­ry of elec­tro­ma­gne­tic fields and waves and are able to apply the tech­ni­ques to re­la­ted pro­blems in en­gi­nee­ring and phy­sics.
CON­TENT:

    Helm­holtz theo­rem
    Ge­ne­ral over­view of Max­well's equa­ti­ons. Dif­fe­rent ap­pro­xi­ma­ti­ons: elec­tro­sta­tics, ma­gne­to­sta­tics, Dar­win
    Elec­tro­sta­tics: Cou­lomb's law, Gauss's law
    Green's func­tion in elec­tro­sta­tics
    Ma­gne­to­sta­tics: Bio-Sa­vart's law, Am­pere's law
    Fa­ra­day's law
    Dis­pla­ce­ment cur­rent, Max­well's equa­ti­ons, vec­tor and scalar po­ten­ti­als
    Gauge trans­for­ma­ti­ons, Lo­renz gauge, Cou­lomb gauge
    En­er­gy con­ser­va­ti­on, Poyn­ting theo­rem
    Con­ser­va­ti­on of li­ne­ar mo­men­tum
    Plane waves in non­con­duc­ting media
    Pro­per­ties of elec­tro­ma­gne­tic waves, po­la­riza­t­i­on
    Pro­pa­ga­ti­on of a wave's pa­cket, phase and group ve­lo­ci­ty
    Cy­lind­ri­cal wa­vegui­des and ca­vi­ties
    TM, TE, and TEM waves
    Wa­vegui­de modes
    Re­so­nant ca­vi­ties
    Green's func­tion for a ti­me-de­pen­dent pro­blem in free space
    Fields and ra­dia­ti­on of lo­ca­li­zed oscil­la­ting sour­ces

MIS­CEL­LA­NEOUS:
EXAM:

oral (approx. 45 min), registration: FlexNow

Date ac­cor­ding to prior agree­ment with lec­tu­rer.


RE­QUI­RE­MENTS:

None
RE­COM­MEN­DED KNOW­LEDGE:

Fun­da­men­tal know­ledge of elec­tro­ma­gne­tics, par­ti­al dif­fe­ren­ti­al equa­ti­ons, and vec­tor cal­cu­lus would be hel­pful.

Literature:     

    Jack­son, John David "Clas­si­cal Elec­tro­dy­na­mics", Wiley & Sons, 1998
    Zang­will, A. "Mo­dern Elec­tro­dy­na­mics", Cam­bridge Uni­ver­si­ty Press, 2013
    Grif­fiths, D.J. "In­tro­duc­tion to Elec­tro­dy­na­mics", Pren­ti­ce Hall, 1999
    Kendall, P.C. "Vec­tor Ana­ly­sis and Car­te­si­an Ten­sors", CRC Press, 1992

Semester: ST 2025
Self enrolment (Teilnehmer/in)
Self enrolment (Teilnehmer/in)