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A B S T R A C T

The microstructure is the centerpiece connecting thermodynamic, compositional, and kinetic stochasticity with
macroscopic behavior. As such, its thorough description is of fundamental importance: Microscopical spatial
composition fluctuations can critically undermine or improve material performance. Still, both traditional and
modern, state-of-the-art statistical microstructural characterization methods overlook micro and mesosegre-
gations. Instead, they generally focus on microconstituent and grain examination. Segregation effects are
thus commonly described on a case-by-case basis or employing parameters that lack spatial interpretation.
We propose fast first-order variograms as a convenient statistical tool to comprehensively describe chemical
segregations in metallic materials. First-order variograms are physically meaningful descriptors capable of
revealing spatial variations and correlations. In particular, we discuss the derivation, application, advantages,
and limits of their fast computation using the fast Fourier transform, which brings a substantial speed increase
over the method-of-moments estimation. Furthermore, we compare them to popular texture characterization
techniques borrowed from image processing and analysis. With this work, we establish a simple-to-use, yet
powerful method to characterize the severeness of micro and mesosegregations and, thus, to quantify their
influence on material behavior.
1. Introduction

All technological metallic materials exhibit segregations in the mi-
cro and mesoscales. They are nothing other than metastable spatial
composition variations observable in a solid alloy, stemming from the
solute solubility differences across phases. As materials solidify, the
solid (either dendritic or cellular) regions push away or pull into them
solute atoms. The composition fluctuations produce, in turn, spatial
changes in the material properties. Far from inconsequential, these
can lead to material failure or a substantial increase in mechanical
properties. Here are some examples:

• In cobalt and nickel-based single-crystal superalloys, solute ho-
mogenization is critical, as it ensures consistent creep resistance
[1,2].

• Chemical inhomogeneities in austenitic stainless steels deployed
in hydrogen-rich environments undermine their resistance against
hydrogen embrittlement, as they compromise the stability of the
austenite phase [3].

• The metastable cellular segregation/dislocation structure obser-
ved in many additively manufactured specimens hinders disloca-
tion movement, thus increasing their strength [4,5].

∗ Corresponding author.
E-mail address: santiago.benito@rub.de (S. Benito).

• The composition difference between dendrites and interdendritic
spaces in high-entropy alloys affects the precipitation of inter-
metallic compounds, and effectively governs the emerging mi-
cromechanical properties [6,7].

• The powder solidification structure influences the carbide size
and morphology in HIP’ed high-alloyed tool steels [8].

Applying electron microscopy, we can describe the resulting seg-
regations in the solid alloys through electron probe microanalysis
(EPMA) and energy-dispersive X-ray spectroscopy (EDS) [1,3,5–7,9–
11]. These chemical characterization techniques can provide elemental
mappings – sometimes called composition fields –, i.e., two-dimensio-
nal matrices whose elements quantify the chemical composition of
that small portion of the material. These mappings are essentially
digital images. The sole (and fundamental) difference is that the matrix
elements in these mappings are real-valued and not discrete intensity
levels as in image pixels. Usually, elemental mappings are accompa-
nied by secondary electron (SE) or backscatter electron (BSE) detector
micrographs that provide context to the measurements. Additional
electron backscatter diffraction (EBSD) measurements can provide crys-
tallographic information in the sampled area [1,3,5–7,9,10].
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The quantitative evaluation of chemical homogeneity usually in-
volves a case-by-case comparison of selected parameters. Arguably, the
most popular approach is the computation of partition coefficients 𝑘
1]. The use of the partition coefficient in metallic materials is tightly
elated to the Scheil–Gulliver equation [12]:

𝑠 = 𝑘𝑐0(1 − 𝑓𝑠)𝑘−1,

here 𝑐𝑠 and 𝑐0 are the element concentrations in weight percent in
he solid and the alloy, respectively. 𝑓𝑠, on the other hand, is the solid
raction. To obtain 𝑘 for a given element, one sorts all concentrations
𝑠 in the corresponding mapping according to 𝑓𝑠 and fits the Scheil–
ulliver equation. The sorting operation thus requires the selection
f a reference element. Koßmann et al. for instance, chose cobalt
ecause is the basis element of the studied alloy [1]. While the partition
oefficient has a sound physical basis, it also has drawbacks. Namely,
t does not convey geometric or spatial information and is not suitable
or describing other types of segregation, such as grain boundary
egregations. Moreover, it requires knowledge of the solidification pro-
ess, which is not always fully understood. This complication applies,
or instance, to metastable cellular microstructures [13]. Finally, it
annot directly describe the homogeneity of properties emerging from
egregations like austenite stability.

Other, perhaps simpler, approaches include the global maximum to
inimum ratio and the computation of the standard deviation across
series of scan lines or in a complete map [10,14,15]. Another alter-

ative is employing texture description methods from signal and image
rocessing and analysis. These are, however, normalized such that they
eturn values within given ranges and thus lack direct physical interpre-
ation. The most common examples are the properties derived from the
ray-level co-occurrence matrix (GLCM): contrast, correlation, energy,
nd homogeneity, which have found application in microstructural
haracterization [16,17]. For example, the homogeneity parameter has
valid span between zero and unity; unity values correspond to a con-

tant value throughout the map, while lower values indicate increasing
egrees of heterogeneity. Moran’s I autocorrelation measure is more
horough but is also normalized [18]. Another potential shortcoming is
hat these image-based approaches can take comparatively long times
o produce a result.

Classic and modern microstructural characterization methods es-
entially deal with random heterogeneous materials. These have more
han one microconstituent or, if they are single-phase, present polycrys-
alline texture [19]. The word random indicates that the microstructure
s intrinsically the result of a stochastical process [20]. Thus, they
est describe, for example, precipitates, inclusions, and grain structures
21–23]. The method proposed in this work targets spatial chemical
ariations and derived properties in single-phase materials or within a
ingle constituent. Hence, in the jargon of stochastic physics, it char-
cterizes inhomogeneities and the resulting local properties in random
omogeneous materials.

The field of statistics dealing with the quantitative description of
ariables distributed in space (and time and space) is called geostatistics
24]. Matheron coined the term geostatistics in 1962, specifically for
re reserve evaluation. Since then, and through constant development
s a multi-disciplinary field, it has appealed to a greater audience.
onetheless, research works employing methods borrowed from this
ranch of statistics are rare in materials science and virtually nonexis-
ent in engineering materials characterization and development. That
aid, within materials discovery and combinatorial science, these tech-
iques do enjoy popularity because of their interpolation and predictive
ower. The most relevant descriptive tool in geostatistics is the vari-
gram, which describes how the values of a given property at two points
n a field change as the distance between them varies. Variograms
ome in different flavors, the most widespread being the variograms
f orders two and one. Of the two, the order-two version is generally
everal orders of magnitude faster to compute, thanks to the method-
2

f-moments estimation through the convolution theorem and the fast t
ourier transform [25]. Yet, the first-order variogram has a more
traightforward physical interpretation that renders it better suited for
nalyzing segregation-driven inhomogeneities.

In this paper, we show how to employ knowledge of the marginal
istribution of elemental and property mappings to compute fast first-
rder variograms. Our goal is to demonstrate a fast and reliable method
hat delivers a targeted quantification grounded on physical meaning.

e examine the estimator derivation, the limits of the technique, and
resent both numerical and real application examples. Finally, we
ompare this approach to image-based texture description methods and
utline its application for microstructural reconstruction.

This work was entirely written as a MATLAB® live script, which
he reader can download from the complementary files section. Its
nteractive nature facilitates the adaption of these methods to other
ndertakings.

. Fast (geo)statistical description

The stochastical nature of metastable thermodynamic states implies
hat slightly different properties will emerge in specimens processed
dentically. This statement holds macroscopically, but it also does
t the micro-level—even if we could perform measurements at the
ame position with arbitrary precision. The intrinsic randomness of
hase nucleation, growth, and coarsening motivates the introduction of
tochastic models to uncover and understand the process-structure links
hat dominate modern materials science and technology [20]. In this
ontext, we can define 𝑍 (𝑠, 𝑡), the local concentration of an arbitrary
lement at position 𝑠, and time 𝑡, as a random – or stochastic – quantity.
s previously mentioned, each specimen will present a distinct version
f 𝑍 (𝑠, 𝑡). In geostatistics, this is called a realization of the random field,
hich we denote as 𝑍 (𝑠, 𝑡;𝜔). The combination of the concentrations
f the 𝑛 alloying elements 𝑍 𝑖 (𝑠, 𝑡;𝜔) ,with 𝑖 = 1, 2,… , 𝑛 and the nature
f the solidification process itself create the material microstructure,
hich is also a random field. Formally, the microstructure is generally

alled a structure-function 𝜉 (𝑠, 𝑡) with realizations 𝜉 (𝑠, 𝑡;𝜔) [26]. The
tructure-function is a general construct that changes according to the
aterial and application studied. For instance, in multiphase materials,
(⋅) describes the disjoint regions that define the phase domains. In the
ase of this work – and drawing from the examples in the introduction
𝜉 (⋅) might describe local austenite stability, dislocation density, or
icrohardness. We will not consider time as a variable in the following
erivation. However, it is useful to commit to memory that for in-situ
eat treatment modeling, 𝑡 is an important variable.

As mentioned in the introduction, variograms are the leading de-
cription tool in the geostatistics toolbox. Variograms are closely re-
ated to the two-point probability functions (also known as two-point
tatistics) and two-point correlation functions [27] used since the end of
he last century to characterize [26,28] and reconstruct [19,29] random
eterogeneous microstructures. The variogram is defined as:

𝛾
(

𝑠1 − 𝑠2
)

= var
(

𝜉(𝑠1) − 𝜉(𝑠2)
)

, (1)

here 𝑠 ∈ R𝑑 and 𝑠1 and 𝑠2 are the positions at which we observe
he property 𝜉 (⋅), and var (⋅) is the variance. Intuition (and a basic
nderstanding of the diffusion behavior of interstitial and substitutional
lloying elements and solidification sequences) suggests that two close
oints will show similar property values. Conversely, at greater dis-
ances, where the solidification and chemical conditions are different,
e expect greater variations. By quantifying the spatial difference,
ariograms reveal correlation patterns. A constant, nonzero variogram
ndicates that the inhomogeneities are uncorrelated. This is, for in-
tance, the case in uniformly distributed random noise, also known as
tatic noise. If the variogram presents repeating, wave-like shapes, a
trong spatial correlation exists in the microstructure. Only a constantly
ero-valued variogram corresponds to a perfect homogeneity.

If the underlying stochastic process is intrinsically stationary, i.e.,

he mean value of a sufficiently large map at the positions 𝑠1 and
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𝑠2 is the same, we can directly compute the variogram using the
method-of-moments (MoM) estimator:

2𝛾 (ℎ) = 1
𝑁(ℎ)

∑

𝑁(ℎ)

(

𝜉(𝑠1) − 𝜉(𝑠2)
)2 , (2)

with ℎ = 𝑠1 − 𝑠2, ℎ ∈ R𝑑 . 𝑁(ℎ) is the number of distinct data
pairs separated by ℎ. To put it in words, the variogram is the mean
squared difference of the random field values at positions separated
by a distance ℎ. For more information on valid variograms see the
works by Cressie and Chilès [24,27]. We have purposefully refrained
from introducing further definitions and validity conditions – such as
conditional negative-definiteness – to keep this section concise.

In EPMA and EDS mappings and, by extension, property mappings,
the stationarity condition generally guaranteed as a consequence of
dendrite scale in relation to the macroscopic geometry and the imag-
ing method. We deal with two-dimensional data arranged in a grid
analogous to the pixels we find in images. This simple fact allows
us to rewrite Eq. (2) using simple operations from signal and image
processing to speed up the estimation:

2𝛾 (ℎ) =
𝑓 2 ⋆ 𝐼𝑓 + 𝐼𝑓 ⋆ 𝑓 2 − 2(𝑓 ⋆ 𝑓 )

𝐼𝑓 ⋆ 𝐼𝑓
, (3)

here 𝑠, ℎ ∈ R2, ⋆ is the cross-correlation operator, the exponent indi-
ates element-wise power, 𝑓 is a matrix containing a grid sampling of
he realization 𝜉(⋅;𝜔), and 𝐼𝑓 is an index matrix containing ones in the
ositions where there is a valid data element in 𝑓 . The cross-correlation
s a mathematical operation from signal and image processing that
escribes the similarity between the operands. By removing1 a data
oint in 𝑓 and, correspondingly, assigning a zero in its 𝐼𝑓 counterpart,
he estimator effectively excludes the position from the analysis. Here,
e use this control to limit the analysis area to the phase of interest

n multi-phase or composite materials. The speed increase linked to
his last mathematical representation comes from the convolution the-
rem. Marcotte showed how to use the fast Fourier transform (FFT) to
erform variogram computations in a fraction of the time required by
he standard estimator in Eq. (2) [25,30]. Since ℎ ∈ R2, the variogram
𝛾 (ℎ) is also a matrix and is sometimes called a variogram map. Similar
o two-point probability functions, these maps are point symmetric with
espect to their center: to find the mean squared difference between
ll points separated by a Euclidean vector of a given magnitude and
irection, one has to place that same vector at the center and read
he result in the resulting element. Thus, a radial average reduces the
imensionality of the descriptor because it returns the mean across all
irections. For microstructures showing anisotropy along a certain axis,
e can derive one-dimensional parameters in the desired orientation.
he fundamental difference between two-point probability functions
nd variograms lies in their output. The former return the probability
f finding the same phase at the end of a vector of given length and
rientation. On the contrary, the latter describe the difference in the
roperty value at the point pairs separated by said vector.

Given that it computes the expected value of squared differences,
e call 2𝛾 (ℎ) a variogram of order two. Variograms of order one,

ometimes called madograms, employ the absolute difference:

𝛾1 (ℎ) =
1

𝑁(ℎ)
∑

𝑁(ℎ)
|𝜉(𝑠1) − 𝜉(𝑠2)| (4)

First-order variograms are more interesting for the case study of this
work than their second-order counterparts:

• Segregations and related structure fluctuations are best expressed
in the same units as the originally measured property.

• The square operation in second-order variograms gives more
weight to larger differences.

1 Here, removing an element means setting to a special undefined data type:
aN, standing for Not a Number.
3

• Dividing the first-order variogram by the mean property value
produces a bounded, unitless measure of the inhomogeneity.

Nevertheless, due to the impossibility of writing the absolute value
operation in terms of cross-correlations or convolutions, computing
first-order variograms directly is not a fast task. However, with some
previous knowledge of the marginal distribution of the property values,
we can derive first-order variograms from regular variograms [24]. In
fact:

2𝛾1(ℎ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

𝛾(ℎ)
var (𝜉)

MD(𝜉) , if cond. (I) holds; (a)

𝛾(ℎ)
MD (𝜉)
var (𝜉)

, if cond. (II) or (III) holds, (b)
(5)

here the conditions are: (I)
(

𝜉(𝑠1) − 𝜉(𝑠2)
)

is normally distributed,
II) 𝜉(⋅) is uniformly distributed, and (III) independent identically dis-
ributed random values are assigned to cells of a random partition.
D(⋅) is an estimator of the absolute mean difference [24]. In general,

he linear combination of two correlated normally distributed random
ariables produces a still normally distributed random variable. This
eans that if the marginal distributions 𝜉 (⋅) are normally distributed,
e can assume

(

𝜉(𝑠1) − 𝜉(𝑠2)
)

is normally distributed, too. As we will
llustrate in the following section, the segregation patterns observed in
etallic materials – and the thus induced property fluctuations – can

e associated with one of the three cases presented in Eq. (5).
Three variogram features generally stand out: The range, the sill,

nd the nugget effect. If the variogram values stabilize around a value
s |ℎ| → ∞, then the sill is that value. The range, on the other hand, is
he smallest value |ℎ0| such that 2𝛾

(

ℎ0 (1 + 𝜀)
)

is the sill for any 𝜀 > 0.
n simpler terms: at Euclidean distances larger than the range, there
s no correlation between two points in the map. Nonetheless, these
arameters may not exist for all random fields or even all directions in
he variogram maps. Finally, the nugget effect is a discontinuity near
he origin, i.e., the variogram tends to a value other than zero when
→ 0. As a consequence of their discrete spatial nature, all variograms

omputed from elemental mappings will exhibit this jump near the
rigin. The magnitude of the nugget effect is therefore tied to the
patial resolution. In the context of segregation analysis, order statistics
re also worth highlighting. These are the minimum, maximum, and
edian variogram values and the first and third quartiles. They enable,

ogether with the mean value, straightforward specimen comparisons
n terms of scalar descriptors. These measures can be applied to all
ariograms, independently of their order and direction.

As implied in the previous paragraphs, variograms can be isotropic
nd anisotropic. In the former case, a variogram of any order is solely a
unction of |ℎ|. Anisotropic property maps and microstructures present
ariograms that vary additionally with orientation. For instance, dif-
erent directions might have the same sill but distinct ranges. Alter-
atively, one direction can exhibit an unbounded variogram while a
erpendicular one attains a sill.

In intrinsically stationary stochastic processes, dividing the vari-
gram of order one by two times the mean map value 𝜇 produces a
nitless measure of the homogeneity, the Gini coefficient variogram:

𝐺 (ℎ) =
𝛾1 (ℎ)
𝜇

(6)

𝛾𝐺 (ℎ) can take values in the interval [0, 1) and is a spatial extension
of the Gini coefficient in econometrics [24,31]. 𝛾𝐺 (ℎ) = 0 if the
structure is homogeneous at the distance ℎ. Oppositely, 𝛾𝐺 (ℎ) → 1 if
the segregation state results in perfect inhomogeneity.

3. Application examples

In the following, we demonstrate the application of first-order var-
iograms and their various derived measures. The three synthetic mi-

crostructures mainly validate the conditions (I)–(III) in Eq. (5) while
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Fig. 1. Artificial microstructure with marginal uniform distribution and computed variograms. (a) Arbitrary mapping of the artificial microstructure. (b) Histogram of the data.
(c) Radially averaged variogram of order one. (d) Radially averaged variogram of order two.
delivering some intuition for interpretation on their application in
single-phase, chemically inhomogeneous materials. The homogeneity
assessment on the austenitic steel 304L illustrates a real-world use
case. It highlights graphical representation, parameter derivation, and
analysis. We will not focus in this work on the use-case statistical re-
construction. We will, however, discuss the application in the summary
and conclusions section.

3.1. Application on synthetic microstructures

The first example is a segregation structure with uniform marginal
distribution and a diagonal repeating pattern of peaks and troughs
similar to the high-ordered lamellar ultra-fine microstructure of eutec-
tic high-entropy alloys [32]. We created it by feeding the MATLAB®
magic function a prime number and repeating the result to form a
bigger 𝑛 × 𝑛 matrix. The microstructure is displayed along with its
histogram in Fig. 1(a) and (d), respectively. The property values are
arbitrary; only their distribution is of interest in this analysis. Fig. 1(b)
and (c) present the radially averaged variograms of orders one and two.
In (b), the right y-axes corresponds to the radial average of the Gini
coefficient variogram. The superscript 𝑅 in the 𝑦-axis label indicates
this radial examination. As a reminder: In (b), the variogram value is
the expected absolute difference of two points separated by a distance
ℎ regardless of the orientation. In (c), instead of the absolute operation,
the squared difference is employed. In Fig. 1(e) and (f), on the other
hand, we present the horizontal variograms of order one and two,
respectively. The strong contrast between these and the radial represen-
tations is a consequence of the microstructural anisotropy. Note that,
because of the rotational symmetry along the axis perpendicular to the
synthetic microstructure shown in Fig. 1(a), the horizontal and vertical
orientations of the variogram are equivalent.

The variogram of order two was computed using the FFT because
of the equivalence of Eqs. (2) and (3). The variogram of order one
shows perfect agreement between the estimations using Eqs. (4) and
(5)(b) even though the fast Fourier version is one around one thousand
4

times faster than the MoM: 170 s and 0.17 s, respectively, employing a
standard workstation with a 3.60 GHz AMD Ryzen 3 chip and 16 GB
of RAM. We could reduce the computation time for Eq. (4) using
parallelization to 100 s. For more insights on how the complexity of
these operations impacts computation time, we refer the reader to the
original work by Marcotte [25].

The periodic nature of the microstructure is evidenced in the vari-
ograms, which oscillate around the sill values. The sills are different
in the radial and horizontal averages—this is another result of the
observed anisotropy. Since we set 53 px as the original tile size in
the magic function, we expect the horizontal period to be exactly 53
px, whereas in the radially averaged variogram it is

√

2 (53 px)2∕2 ≈
37.5 px. The oscillations are reflective of the strong spatial correlation.
As the distance between pairs of points increases, the oscillations
dampen in the radial variograms as the result of the rise in number
and variance of the values of the point pairs. For ℎ → ∞, i.e., at the
macroscopic level, the radially averaged variogram will tend to its sill.
Contrarily, the dampening effect does not appear along the horizontal
and vertical axes because the original tiles are repeated precisely along
those axes.

As presented in the previous section, we can derive additional
homogeneity measures from the first-order variogram. For instance,
the mean absolute difference is 905.55, which corresponds to a Gini
coefficient of 0.322. Further, the maximum absolute difference we can
expect between any two points in the field is 1146. The wealth of
possible scalar descriptors together with the directionality selection
make the variogram a versatile tool. In the remaining examples, we
will illustrate other prospective measures.

We created the following segregation structure using the Kolmogo-
rov–Petrovsky–Piskunov reaction–diffusion equation. Yang published
a compact MATLAB® implementation of its finite differences solution
[33]. The patterns that arise from the solution of these equations are
called Turing’s patterns. In Fig. 2(a) we present the microstructure,
and in (b) we display its histogram. For instance, we can imagine that
such a pseudo-random property map represents microsegregations at
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Fig. 2. Artificial microstructure with identically distributed random values in two random regions and computed variograms. (a) Arbitrary mapping of the artificial microstructure.
(b) Histogram of the data. (c) Radially averaged variogram of order one. (d) Radially averaged variogram of order two.
the interfaces of an alloy consisting of at least two elements. Analogous
to Fig. 1, we see in the bottom row the variograms of orders one and
two.

From the histogram, we infer that the marginal distribution can be
reasonably approximated to be composed of identically distributed ran-
dom variables assigned to either region: Matrix or boundary. Thus, we
compute the fast Fourier first-order variogram again using Eq. (5)(b).
The agreement between the FFT approximation and the estimation is
slightly off for small ℎ values. The reason for this is that the diffusion
equation does not create two sharply divided regions, and therefore
there is a gradient in the represented property. The range in the radially
averaged variograms is approximately 12 pixels, which corresponds
to the segregation thickness in the regions we dubbed interfaces. The
bumps around the sill with periodicity roughly equal to the mean free
path in the matrix are the result of this correlation.

We modified the microstructure presented in Fig. 2 to create a
normal marginal distribution, purposely adding Gaussian noise in the
process. The resulting property map and histogram are in Fig. 3(a)
and (b), respectively. We computed the first-order variogram in (c),
correspondingly, using Eqs. (4) and (5)(a). The agreement in this
instance is, again, excellent, with the FFT variant being around one
thousand times faster. Lastly, we present the corresponding radially
averaged variogram of order two in (d).
5

The new microstructure shows less spatial correlation than the
original one, evidenced by its reduced matrix-boundary contrast. This
correlation decrease manifests itself clearly in the variograms, which
have no oscillations. Instead, the variograms monotonically increase
to the sill. Since the spatial geometry in these last two property maps
is identical, we observe the same range. The Gini variogram, on the
other hand, presents lower values in Fig. 3, even though the variogram
sills in Figs. 2(c) and 3(c) are comparable. This higher homogeneity is
attributed to the mean value of the normally distributed mapping. In
other words, their variability is similar in absolute terms, but relative
to the mean value, the field in Fig. 3 is more homogeneous than its
counterpart in Fig. 2.

3.2. Application example on the stainless austenitic steel AISI 304L

Austenitic stainless steels from the compositional range of AISI 316L
exhibit a high resistance against hydrogen environment embrittlement
(HEE) in a wide range of testing conditions [34,35]. This is related to
their high austenite stability, i.e., the stability of the 𝛾-austenitic face-
centered cubic (fcc) lattice against a transformation to body-centered
cubic (bcc) 𝛼′-martensite [36]. The 𝛾 → 𝛼′ transformation can either
be thermally activated by cooling below the martensite start tempera-
ture (𝑀 ), or induced by applying a mechanical load at temperatures
𝑠
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Fig. 3. Artificial microstructure with marginal normal distribution and computed variograms. (a) Arbitrary mapping of the artificial microstructure. (b) Histogram of the data. (c)
Radially averaged variogram of order one. (d) Radially averaged variogram of order two.
below the 𝑀𝑑 -temperature [37,38]. Once 𝛼′-martensite is present in an
austenitic stainless steel, it deteriorates its resistance against HEE. That
is because 𝛼′-martensite is inherently more susceptible to hydrogen-
induced fracture than austenite and the diffusion of hydrogen atoms
is multiple orders of magnitude faster in the bcc lattice than in the
fcc lattice [36,39–41]. The austenite stability is therefore an important
indicator for the resistance against HEE. Recent studies have shown that
not only the global austenite stability, which is estimated based on the
global alloy composition, influences the resistance against HEE, but also
local variations of the austenite stability on the micro scale can have
an impact [14,42]. Regions in the microstructure with locally reduced
austenite stability provide favorable sites for 𝛼′-martensite formation
and thereby facilitate hydrogen-induced crack formation and growth.
Local variations of the austenite stability stem from element segrega-
tions that arise during the solidification in the steel casting process and
remain throughout processing steps like forging and solution annealing
[43,44]. Therefore, bars and flat products made of austenitic stainless
steel typically exhibit band-like structures of high and low-alloyed
regions in the microstructure [15].

Using the chemical composition from EDS mappings, we can com-
pute the local thermodynamic driving force for the 𝛾 → 𝛼′ transfor-
mation 𝛥𝐺𝛾→𝛼′ , and compute empirical descriptors such as 𝑀 and 𝑀
6

𝑠 𝑑
temperatures. For instance, the 𝑀𝑑30 temperature, proposed by Nohara
et al. [45], computes the temperature at which a true plastic strain of
30% causes a transformation of 50% of the austenite into 𝛼′-martensite.

For this case study, the material employed is the austenitic stainless
steel AISI 304L (X2CrNi18-9, 1.4307). We show the results of four
specimens that represent four usual conditions: (i) cast & rolled; cast,
rolled and diffusion annealed at 1050 ◦C with two distinct durations,
(ii) 5 h and (iii) 15 h; and, finally, (iv) electro-slag remelted (ESR) &
rolled. The material used for conditions (i)–(iii) was produced in an
industrial continuous casting process with a cross-section of 265mm,
and was subsequently hot-rolled to a bar shape with a diameter of
30mm. The specimens for investigation were taken from the center
of the bar. For condition (iv), the cast material was subjected to an
industrial ESR process, in which an ingot with a diameter of 160mm was
produced. The ingot was then hot forged to a diameter of 50mm. The
chemical composition, as measured with optical emission spectrometry
(OES), is given in Table 1.

We expect the austenite stability descriptor mappings to distinctly
reveal the effects of the heat treatment and processing routes. For one,
longer diffusion annealing times enable a more even distribution of
the substitution elements that are ultimately decisive for local phase
stability. The ESR step, on the other hand, reduces the range of macro
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Fig. 4. BSE micrographs of the four AISI 304L (X2CrNi18-9, 1.4307) specimens. (a) Cast & rolled. (b) Cast, rolled, and annealed at 1050 ◦C for 5 h. (c) Cast, rolled, and annealed
at 1050 ◦C for 15 h. (d) Electroslag remelted & rolled.
Table 1
Specimen chemical composition, measured with optical emission spectrometry in wt.%.
The nominal composition is also provided as a reference. Note that in it, the values
given for C, Si, and Mn are the max. bound.

Specimen Fe C Si Mn Cr Ni N

X2CrNi18-9, nominal Bal. 0.03 1.00 2.00 18.00 9.00 –
Cast and rolled & annealed Bal. 0.02 0.68 1.97 17.98 8.48 0.06
ESR Bal. 0.03 0.68 1.87 17.87 8.66 0.08

and micro segregations, thus producing a refined microstructure when
compared with casting [46].

The descriptive power of variograms hinges on retrieving enough
data to capture thoroughly the stochastic process at hand. Depending
on the application, processing route, and specimen dimensions, it might
be imperative to image several fields and present the corresponding
statistics in the examination. Note that, for the purposes of this work,
we limited ourselves to a relatively large area for each specimen.
These can be seen in Fig. 4. Besides the expected austenitic grains
we find MnS inclusions, visible as black horizontal lines and spots.
These micrographs on their own do not provide any insight into the
segregation-induced stability inhomogeneities.

Fig. 5 shows the driving force 𝛥𝐺𝛾→𝛼′ mappings of the four spec-
imens, which we computed using the 2021a distribution of Thermo-
Calc® and the database TCFE10 v10.1. Note that higher 𝛥𝐺𝛾→𝛼′ values
indicate higher austenite stability. We recorded the EDS mappings of
the elements Fe, Cr, Ni, Mn, Si, Mo, and Cu using an SEM TESCAN
MIRA3 equipped with an Oxford Instruments EDS unit. The measure-
ment fields were sampled such that the deformation direction coincides
with the horizontal axis. The interface software AZtec®, also provided
by Oxford Instruments, handled the data acquisition and evaluation.
After binning, the size of each matrix element was 0.52 μm across all
maps. We performed the complete data analysis in MATLAB®, using
the academic version R2019b. We limited the processing to a 3 × 3
square median filtering, applied equally across all measurements. This
7

step helps to bring back detail to the microsegregation structures as
it reduces the Gaussian noise from the EDS measurements. There is
no risk of information loss, as the maps are relatively large matrices.
The variogram maps will evidence the spatial filtering performed: at
distances smaller than the kernel size, the median filter will mask
the true correlation of the data. We will be cognizant of this and
remove those distances from the spatial analysis. We considered an
even distribution of the elements C and N, with the corresponding
concentration values given in the OES measurements. We set all MnS
inclusions as NaNs to analyze exclusively the 𝛾 phase. In Fig. 5, we
show these positions as white pixels.

In Fig. 5, the colormap scaling is the same for all mappings, meaning
that a brief look already gives away qualitative information about them.
In (a), the sample in the cast & rolled state clearly shows the above-
mentioned band-like structures. These are less sharp in the annealed
samples in Fig. 5(b) and (c); so much so that they are barely noticeable
after fifteen hours of heat treatment. Finally, we see the same bands in
the ESR sample, (d), albeit less distinct.

Leaving the qualitative observation to enter the quantitative anal-
ysis of the data, we start by presenting their normalized histograms
in Fig. 6. Three pieces of information are immediately apparent: (i) the
mean values are similar, (ii) the data is normally distributed in all cases,
and (iii) the variance changes across samples.

Observation (i) is to be expected: All specimens have essentially
the same global chemical composition. As for (ii), these mappings can
be considered a linear combination of the local element concentra-
tions [45], which, in turn, are generally also normally distributed.
Even though the element distributions are not strictly independent or
identically distributed, we consistently observed their weighted sum to
converge to a Gaussian distribution. Finally, point (iii) reveals the first
piece of information that leads to the interpretation of the variograms.
The ESR sample shows the smallest variance, while the cast & rolled
one has the largest. We expect to see these tendencies reflected in the
sills of the variograms, provided they have one. However, as histograms
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Fig. 5. Driving force 𝛥𝐺𝛾→𝛼′ mappings of the four AISI 304L (X2CrNi18-9, 1.4307) specimens. (a) Cast & rolled. (b) Cast, rolled, and annealed at 1050 ◦C for 5 h. (c) Cast, rolled,
and annealed at 1050 ◦C for 15 h. (d) Electroslag remelted & rolled. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. 6. Histograms of the driving force 𝛥𝐺𝛾→𝛼′ mappings of the four specimens.

do not provide spatial information, we cannot make statements about
the area of influence or periodicity of the segregations.

The first-order variograms of all four specimens are laid out in
Fig. 7. As we computed them for all directions, these are
two-dimensional maps. We present 300 μm × 300 μm fields to detail
the changes in 𝛥𝐺𝛾→𝛼′ for distances up to 150 μm. We discarded the
data points corresponding to distances shorter than 3 px ≈ 1.58 μm to
account for the median filtering. The boxplots next to the color bar
indicate the quartiles of each variogram. The FFT computation time
needed for each mapping in the workstation mentioned in the previous
8

subsection was around 3 s. Contrarily, due to the size of the mappings,
the MoM estimation required more than 130 s.

Contrary to the 𝛥𝐺𝛾→𝛼′ fields shown in Fig. 5, the corresponding
2𝛾1 maps look very dissimilar. For instance, by studying the box plot
corresponding to the ESR specimen, we notice the maximum expected
difference in 𝛥𝐺𝛾→𝛼′ between any two points is around 103 J/mol. In
the cast & rolled sample, it is slightly above 240 J/mol. The specimen
annealed for 15 h has the lowest variogram variance, indicating next to
no correlation between points. The anisotropy appears as variations in
the variograms in orthogonal directions. To get a tighter grasp on this
effect, we computed the averaged first-order variograms we exhibit in
Fig. 8; (a) presents a horizontally averaged version of the data, while,
in (b), we show a vertically averaged account.

Let us begin by interpreting the horizontally averaged data. The first
takeaway is that all variograms are virtually flat lines. The specimens
essentially differ in their sill value. The cast & rolled sample exhibits
the largest absolute differences, followed by the annealed samples.
The ESR process cut the variogram values to roughly half of the
original material. The vertical direction, which, again, is perpendicular
to the deformation axis, offers more interesting insights. Here, the
curves present oscillations and spatial variations associated with the de-
formation process. The five-hour-long annealing treatment effectively
reduced the correlation intrinsic to the segregation bands. However, it
did not manage to homogenize the material further. This behavior is
evident in the relatively greater shift in the vertical variogram after
the shorter annealing when compared to the horizontal one. The 15-
h annealing produced a nearly isotropic structure: The vertical and
horizontal variograms are flat lines revealing the same absolute dif-
ferences regardless of distance. Still, despite its slight anisotropy, the
ESR specimen has the best homogeneity. We can measure the range to
28 μm in the five-hour annealed and ESR specimens. In the cast & rolled
sample there is no apparent range, and the 15-h treated specimen, as
explained above, shows no spatial correlation.

These observations can be complemented by targeted calculation of
measures. Table 2 shows some parameters that quantify the isotropy
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Fig. 7. Variograms of first order of the four samples in all directions. (a) Cast & rolled. (b) Cast, rolled, and annealed at 1050 ◦C for 5 h. (c) Cast, rolled, and annealed at 1050 ◦C
for 15 h. (d) Electroslag remelted & rolled. The box plots show the variogram quartiles. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Fig. 8. Variograms of first order of the four samples. (a) Horizontal averages. (b) Vertical averages. The variograms of order one were derived from the fast computation of the
variogram of order two using Eq. (5)(a).
and homogeneity of the specimens. For the vertical and horizontal
directions, we present the minimum, maximum, and mean values of the
first-order variograms and their Gini counterparts. Given the variogram
shape, the minimum value coincides with the nugget effect. We further
compare the annealed and ESR samples with the original material with
the percentile relative difference measure Diff. = 100(1 − CR∕PR).
Here, CR stands for cast & rolled and PR for processed. The isotropy
parameter is computed by dividing the mean variogram values in the
9

deformation direction by its perpendicular analog. Increasing numbers
indicate higher isotropy, with unity being the upper limit. In the bottom
rows of Table 2, we present the minimum, maximum, and mean across
all directions.

By tuning out the segregation band-line structures, the horizon-
tal variogram provides information about the inhomogeneities solely
caused by the solidification process. In its derived measures, we can as-
sess the impact of the heat treatment on the general homogenization in
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Table 2
Selected derived homogeneity measures for the horizontal and vertical directions. The
relative difference shows the change with respect to the cast & rolled specimen. The
isotropy measure results from dividing the mean horizontal and vertical variogram
values. The global parameters in the bottom six rows are presented as reference.

Cast &
rolled

Annealed, 5 h Annealed, 15 h ESR

Val. Diff. Val. Diff. Val. Diff.

Ve
rt

ic
al

2𝛾1 (Jmol−1)
min 180.9 170.8 6% 138.0 24% 93.1 48%
max 240.0 180.0 25% 142.2 41% 102.9 57%
mean 219.1 178.4 19% 141.1 36% 101.2 54%

𝛾𝐺 (× 10−2)
min 3.56 3.38 5% 2.69 24% 1.82 49%
max 4.73 3.57 25% 2.77 41% 2.01 58%
mean 4.32 3.53 18% 2.75 36% 1.98 54%

H
or

iz
on

ta
l 2𝛾1 (Jmol−1)

min 178.0 169.0 5% 137.7 23% 92.4 48%
max 185.6 173.0 7% 138.7 25% 96.4 48%
mean 181.8 172.0 5% 138.1 24% 94.5 48%

𝛾𝐺 (× 10−2)
min 3.51 3.35 5% 2.68 24% 1.80 49%
max 3.66 3.43 6% 2.70 26% 1.88 49%
mean 3.58 3.41 5% 2.69 25% 1.85 48%

Isotropy mean 0.839 0.964 16% 0.979 18% 0.934 13%

Gl
ob

al

2𝛾1 (Jmol−1)
min 177.9 169.0 5% 137.7 23% 92.4 48%
max 244.2 180.6 26% 143.3 41% 103.9 57%
mean 218.2 178.3 18% 141.0 35% 101.1 54%

𝛾𝐺 (× 10−2)
min 3.51 3.35 5% 2.68 24% 1.80 49%
max 4.81 3.58 26% 2.79 42% 2.03 58%
mean 4.30 3.53 18% 2.75 35% 1.98 54%

the alloy. The vertical variogram, on the other hand, characterizes the
segregation bands accentuated by the manufacturing process. Together,
they concisely describe the isotropy evolution.

The ESR process achieved a substantial global homogeneity boost
by reducing all measures by around 50%. The vertical component
was reduced to a greater extent than the horizontal one, improving
the isotropy by 13% compared to the original cast & rolled material.
The longer of the two annealing treatments accomplished a practically
isotropic structure exhibiting a value of 0.979. It also decreased the
mean variogram value by 25% and 36% in the horizontal and vertical
directions, respectively. In contrast to the cast & rolled specimen, the
five-hour annealing efficiently constrained the variance of the vari-
ograms, reducing the gap between minimum and maximum values
considerably. However, due to the declining driving force towards
equilibrium, annealing time brings diminishing returns. The Gini var-
iograms have relatively low values in the order of 10−2. As the mean
𝐺𝛾→𝛼′ value is practically identical in all four specimens, the relative
ifferences between the Gini parameters and the standard first-order
ariograms are equivalent. The observed dissimilarities in the differ-
nce measure Diff. in the horizontal and vertical directions stem from
he fact that the vertical direction has more homogenization potential,
s a result of accentuated chemical segregations associated with the
anufacturing process.

Armed with the newly acquired quantitative information, we can
o back to the qualitative assessment at the beginning of this section.
ven though not completely segregation-free, the ESR specimen turned
ut to consistently exhibit the highest austenite stability homogeneity
cross all studied processing routes. The segregation state before the
eformation is low enough to produce band-like structures that do not
ompromise austenite stability. This behavior results in an improved
esponse to HEE: Egels et al. showed that ESR effectively reduces
ydrogen-induced crack nucleation and slows their growth [42]. In this
ontext, the absence of segregation structures observed in the 15 h-
nnealed sample is a rather deceptive trait. While it performs better
han the other cast specimens, its lack of spatial correlation is not

direct indicator of favorable spatial distribution. As a last remark
ithin this application example, we would like to highlight that the
easured Gini-based metrics have only deceptively low values. The
10
2 × 10−2 difference between the cast & rolled and the ESR samples can
result in a drastic decline of strength and ductility [42].

Additional investigations in this line of research include the system-
atical study of the diffusion annealing efficiency and the spatial analysis
of local the stacking fault energy. In the case of the former, for instance,
the combination of first-order variograms, mechanical testing, and
crack analysis through digital image analysis can provide fundamental
information to achieve more economic and sustainable heat treatment
processes. The stacking fault energy, on the other hand, depends on
the chemical composition and is thus also prone to segregation-induced
inhomogeneities.

4. Comparison with texture descriptors

As mentioned in the introduction, it could be argued that the pro-
posed geostatistical approach is not strictly needed; after all, standard
image processing and analysis methods are already capable of describ-
ing textures. However, as we will discuss in the following paragraphs,
these techniques have distinct drawbacks that make the variogram
approach much better suited for the task at hand. In particular, we will
address the descriptors derived from GLCMs [47]. These are popular in
microscopy and computational biology because they enable structure
characterization based on analysis of grayscale images [48]. An 𝐿 × 𝐿
GLCM stores the number of times that pixel pairs with values 𝑧𝑖 and
𝑧𝑗 occur at a distance ℎ, with 𝑖, 𝑗 = 1, 2, . . . , 𝐿, where 𝐿 is the number
of gray levels. To put it differently, for each offset ℎ, we compute a
bivariate histogram, which we use to derive the descriptors. We repeat
this process for each offset.

In the following, we will employ GLCMs on the mappings presented
in the previous section. Consequently, as the probability of encoun-
tering an element with a given value is exactly zero, we will rescale
and discretize the real-valued property maps of 𝛥𝐺𝛾→𝛼′ to compute the
GLCM and derived descriptors, effectively turning them into grayscale
images. The selected descriptors are Contrast and Homogeneity. We
capitalize these when we refer to the parameters to differentiate them
from the nouns contrast and homogeneity. Their mathematical definition
will not be covered here as this is out of the scope of this work. Instead,
we refer the reader to Chapter 11 of the book Digital Image Processing
by Gonzalez [47]. In a nutshell, the Contrast measures the squared
intensity differences between pixels at a distance ℎ. It is thus zero
when the image has no intensity changes in the selected direction. The
Homogeneity descriptor quantifies how close or far away the GCLM
is from a diagonal matrix and is bounded between zero and unity. A
Homogeneity of one indicates no intensity changes in the considered
direction.

Fig. 9 displays the Contrast and Homogeneity parameters for the
vertical and horizontal directions of the mappings presented in Fig. 5,
employing GLCMs with 𝐿 = 256. It is not surprising that the Contrast
bears a striking resemblance with the variograms of order one we
presented in Fig. 8: Its definition is essentially equivalent to that of the
variogram of order two. There are two caveats, though. Firstly, with the
rescaling and derivation of the GLCM, we lost the capability of actually
expressing the inhomogeneities in physical units. The upper bound
of the Contrast parameter is solely linked to the size of the GLCM.
Secondly, the computation of just two directions for all four mappings
took approximately 14 s, whereas the fast variogram computation of
all directions and distances, as mentioned above, took just 3 s, also
employing the workstation mentioned above.

The advantage of the GLCM approach is that it enables the compu-
tation of other descriptors such as the Homogeneity in Fig. 9(c) and
(d). These might provide further insights into the data. Ultimately, the
construction of a GLCM as an intermediate step carries more informa-
tion and offers a variety of interpretations. MATLAB® provides built-in
algorithms to compute two further descriptors: Correlation and Energy
[47]. The Homogeneity descriptor also looks like the variogram, only
flipped in the vertical direction; recall that higher homogeneity values



Materials Today Communications 34 (2023) 105016S. Benito et al.
Fig. 9. Properties of the gray-level co-occurrence matrix. Computed Contrast (a) and (b) and Homogeneity (c) and (d) for the horizontal (a) and (c) and vertical (b) and (d)
directions and all distances.
imply less randomness in the distribution of the intensity values. Essen-
tially, this behavior arises because the Homogeneity concept is related
to the definition of covariance. Two random variables whose bivariate
histogram is predominantly limited to the main diagonal are strongly
correlated. Oppositely, if the random variables are uncorrelated, the
histogram will take a broader range of positive values elsewhere. The
concepts of covariogram and correlogram are very similar in nature to
the Homogeneity and Correlation of GLCMs [24,27] and can be also
computed with fast algorithms [25,30].

In summary, the application of GLCMs to describe correlations in
property maps has three fundamental drawbacks: (i) the real-valued
matrices need to be converted to gray-level images, (ii) the resulting
parameters lack immediate physical interpretation, and (iii) the compu-
tation times are several orders of magnitude larger. On the other hand,
the grayscale texture analysis offers more flexibility and a broader
palette of descriptors.

5. Summary and conclusions

In this work, we endeavored to showcase the advantages of us-
ing fast variograms of order one to quantitatively assess segregation-
induced inhomogeneities in metallic materials. To that end, we ex-
amined the boundary conditions for their deployment in different
segregation patterns and microstructures. Furthermore, we evaluated
11

their efficiency and descriptive power in simulations and an empirical
use case. Finally, we compared these algorithms with the GLCM texture
descriptors of image processing and analysis, drawing parallels and
conclusions along the way. All the scripts used were programmed in
MATLAB®. Nevertheless, as they rely solely on standard functions, their
development in other scientific programming languages is trivial.

We expect to see more applications of these techniques in ma-
terials science and engineering in the future, particularly in alloy
and microstructural design. As briefly discussed at the beginning of
Section 3, the application space of the presented method is twofold.
On the one hand – and as shown in the application examples –, we
can use this tool to characterize, rationalize, and predict micro and
macroscopic properties. Further, the deployment of fast variograms in
microstructural reconstruction tasks is especially promising. There, it
can complement the already established two-point probability func-
tions and physical descriptors [19,23,49] to create increasingly realistic
and complex pseudo-random microstructures. These synthetic struc-
tures could then model segregations and segregation-induced property
fluctuations in single and multiphase alloy systems [11]. Concretely,
statistically quantifying metastable segregation states helps uncover
new process-structure links specific to many technologically relevant
materials. These include – drawing from the examples listed in the
introduction – cobalt and nickel-base superalloys, high-entropy alloys,
austenitic stainless steels, powder metallurgy tool steels, and metallic
materials for the additive manufacturing processing route. Besides the
case study of austenite stability we thoroughly handled in Section 3.2,

we can mention a few technologically relevant examples:
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• The efficiency evaluation and consequent optimization of the
homogenization and solution treatments in superalloys. This can
be achieved by studying the cost-benefit relationship based on
spatial microsegregation, phase segregation and stability, and
treatment cost.

• The geostatistical analysis of chemical inhomogeneities can shed
light on the solidification process of metastable cellular mi-
crostructures. Correlation studies of the elemental mappings can
determine the extent and range of contrary and co-segregation
patterns in cells and cell walls.

• The systematical study of the composition gradient in high-
entropy alloys can help develop new single-phase alloys. The
precipitation of intermetallic phases can be circumvented by
understanding the segregation tendencies and their arrangement
in space.

• Selecting powder particle fractions according to their segregation
structures could enable the fine-tuning of carbide size and shape
distributions in HIP’ed high-alloy tool steels.

Ultimately, only through tailored segregation behavior, we can
trive to improve the desired material properties. At the heart of this
ffort lies the presentation of a characterization method that is both sta-
istical and has physical meaning. The juxtaposition is not often present
n materials science and engineering, where, for example, n-point
tatistics are employed for microstructural reconstruction but rarely
een in technological applications. By showing the descriptive power of
ariograms of order one, their physical interpretation, and making the
unctions and algorithms directly available, we propose a common lan-
uage for the characterization of segregation-driven inhomogeneities in
etallic materials.

The reader can download the MATLAB® functions employed to gen-
rate this article, together with the raw data, from the supplementary
aterials section.
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