Bereich: Theoretische Physik
Inhalt: In the first part of the course the basic principles of quantum information, i.e., qubits, quantum gates, quantum circuits and quantum algorithms, quantum games, quantum entanglement and quantum teleportation, quantum computing, adiabatic quantum computing and quantum annealing, quantum machine learning and quantum simulations, etc. will be addressed. The second part of the course will be devoted to a particular realization of quantum information devices, i.e., superconducting qubits circuits.
Lernziele: Verständnis der physikalischen Prinzipien der Quanteninformation und des Quantenengineerings mit quantensupraleitenden Schaltungen.
Understanding of the physical principles of quantum information and quantum engineering with quantum superconducting circuits.
Empfohlene Vorkenntnisse: Kenntnisse der Lineare Algebra, Quantenmechanik.
Nützliche Literatur: M. A. Nielsen, I. Chuang, “Quantum computation and quantum information”;
D. Heiss, “Fundamentals of quantum information: quantum computation, communication, decoherence and all that”;
M. Kjaergaard et al. "Superconducting qubits: Current state of play." Annual Review of Condensed Matter Physics.
Besonderheiten: Lectures (2SWS) and Exercises (2SWS) will be in English
Prüfungsmodalitäten: Mündliche Prüfung 30 Min
Inhalt: In the first part of the course the basic principles of quantum information, i.e., qubits, quantum gates, quantum circuits and quantum algorithms, quantum games, quantum entanglement and quantum teleportation, quantum computing, adiabatic quantum computing and quantum annealing, quantum machine learning and quantum simulations, etc. will be addressed. The second part of the course will be devoted to a particular realization of quantum information devices, i.e., superconducting qubits circuits.
Lernziele: Verständnis der physikalischen Prinzipien der Quanteninformation und des Quantenengineerings mit quantensupraleitenden Schaltungen.
Understanding of the physical principles of quantum information and quantum engineering with quantum superconducting circuits.
Empfohlene Vorkenntnisse: Kenntnisse der Lineare Algebra, Quantenmechanik.
Nützliche Literatur: M. A. Nielsen, I. Chuang, “Quantum computation and quantum information”;
D. Heiss, “Fundamentals of quantum information: quantum computation, communication, decoherence and all that”;
M. Kjaergaard et al. "Superconducting qubits: Current state of play." Annual Review of Condensed Matter Physics.
Besonderheiten: Lectures (2SWS) and Exercises (2SWS) will be in English
Prüfungsmodalitäten: Mündliche Prüfung 30 Min
- Kursleiter/in: Mikhail Viktorovic Fistul
Semester: WT 2024/25