

RUHR-UNIVERSITÄT BOCHUM

Seminar zur didaktischen Rekonstruktion

WiSe 2025/26 • Dr. Marco Seiter

Organisatorisches

Dr. Marco Seiter

- Akademischer Rat
- Raum: NB 3/127
- Telefon: 0234-32-23638
- E-Mail: Marco.Seiter@rub.de
- Sprechstunde: Donnerstag 10 11Uhr
- Studienberater f
 ür Lehramt-Physik

Bestehen der Veranstaltung

- Voraussetzung: Abgeschlossenes Modul "Fachliche Vertiefung" bis zum 30.11.2025
- Max. 3 Fehltermine (vorher per E-Mail abmelden)
 - Ausnahme: Überschneidungen durch Praxissemester
- Regelmäßige aktive Teilnahme am Seminar
- Gestalten einer Seminarsitzung (inklusive Handout)
- Vorbesprechung eine Woche vor der Seminarsitzung
- Schriftliche Zusammenfassung der Seminarsitzung inklusive der abschließenden Diskussion (überarbeitetes Handout, 2 DIN-A4 Seiten)
- Moodle-Kurs: Didaktische Rekonstruktion physikalischer Inhalte (160704)

Mündliche Modulabschlussprüfung

- Erarbeitung einer eigenen didaktisch begründeten didaktischen Rekonstruktion zu einem vorgegebenen Thema (nicht das eigene aus Seminar)
 - 15 Minuten Vortrag
 - Das Thema wird 2 Wochen vor der Prüfung bekannt gegeben, gleichzeitig werden 3 spezielle fachdidaktische Themen (nicht das eigene Thema) gewählt
- 15 Minuten Prüfungsgespräch über die didaktische Rekonstruktion
- 15 Minuten Prüfungsgespräch zu den speziellen fachdidaktischen Themen

Ziel der Veranstaltung

- Erwerb von grundlegenden Techniken der Erarbeitung, Aufbereitung, Vertiefung und Präsentation physikalischer Inhalte und fachdidaktischer Ansätze
- Physikalischen Inhaltsgebiet in unterschiedlichen Unterrichtsansätze (u. a. aus Lehrbüchern) darstellen und vergleichend bewerten

Gestalten einer Seminarsitzung

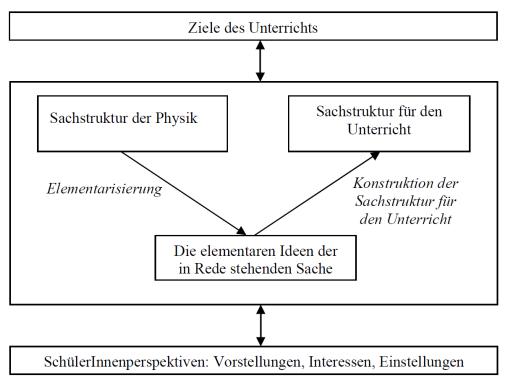
- Gestalten einer Seminarsitzung (inklusive Handout)
- Vorbesprechung mind. eine Woche vor der Seminarsitzung
- Schriftliche Zusammenfassung der Seminarsitzung inklusive der abschließenden Diskussion (überarbeitetes Handout)
- Mögliche Themen: Geometrische Optik, Elektrischer Stromkreis, Energie und Entropie, Feldkonzept, Elektrodynamik Schwingungen und Wellen, Relativitätstheorie, Quantenmechanik, Teilchenphysik usw.
- Mögliche Grundlage: Wilhelm, Schecker & Hopf (2021)
 Unterrichtskonzeptionen für den Physikunterricht

Kriterien für die Seminarsitzung

- Kein Vortrag!
- Diskussion von verschiedenen Zugängen in Hinblick auf:
 - Elementarisierung (Verstehenselemente, Darstellungsformen) des Zugangs
 - Vor- und Nachteilen
 - Begründung der Auswahl und Reihenfolge von Teilthemen (didaktische Strukturierung der Sachstruktur)
 - Eingang auf bekannte Fehlvorstellungen
 - Fachliche Richtigkeit
 - Umsetzbarkeit
 - usw.
- Kein Anspruch auf vollständige Darstellung der Zugänge

Geplanter Seminar Verlauf

Seminarverlauf:


Datum	Thema
Fr	Organisatorisches / Ziel der Veranstaltung
17.10.2025	Elementarisierung und didaktische Rekonstruktion
Fr	Fachdidaktische Perspektive auf Unterrichtsmaterial
24.10.2025	•
Fr	Repräsentationsformen
31.10.2025	
Fr	Schülerperspektive, Umgang mit Schülervorstellungen
07.11.2025	
Fr	"Stolpersteine"
14.11.2025	
Fr	Sachstrukturdiagramme
21.11.2025	
Fr	
28.11.2025	
Fr	
05.12.2025	
Fr	
12.12.2025	
Fr	
19.12.2025	
Fr	
20.12.2024	
Fr	
09.01.2026	
Fr	
16.01.2026	
Fr	
23.01.2026	
Fr	
30.01.2026	
Fr	Abschluss des Seminars
06.02.2026	

1. Sitzung

Elementarisierung und didaktische Rekonstruktion

Modell der didaktischen Rekonstruktion

(Duit, 2010)

Elementarisierung

- Drei Aspekte der Elementarisierung (Bleichroth, 1991):
 - Bestimmung des Elementaren (Analyse)
 - Was sind die zu erreichenden Kompetenzen?
 - Didaktische Analyse unter Berücksichtigung der
 - Ziele (z.B. naturwissenschaftliche Grundbildung)
 - kognitive, affektive und soziokulturelle Voraussetzungen
 - Auswahl der Sachverhalte, die beispielhaft und bedeutend für das Fach sind
 - 2. Vereinfachung (didaktische Reduktion)
 - 3. Zerlegung in einzelne Sinneinheiten

Anforderungen an die didaktische Rekonstruktion

- Fachgerecht:
 - Keine grundlegend physikalisch falschen Aussagen
 - Klärung der fachlichen Relevanz (z.B. im betrachteten Modell gültig)
 - Anschlussfähigkeit
 - Die Aneignungslogik stimmt in den meisten Fällen nicht mit der Sachlogik überein
- Adressatengerecht:
 - Aufbau auf dem Vorwissen und den Präkonzepten der Adressaten (SchülerInnen)
 - Motivationale Abstimmung
- Zielgerecht: Lernziele erreiche

Aufgabe: Prototyp zur didaktischen Rekonstruktion

Sachstruktur der Physik:

- Die auf einen Körper wirkende Kraft \vec{F} ist definiert als die Ursache der Impulsänderung eines Körpers über eine Zeit t.
- $\vec{F}(t) = \dot{\vec{p}}(t)$

Sachstruktur f ür den Unterricht:

Die Newton'sche Bewegungsgleichung

 $\vec{F} \cdot \Delta t = m \cdot \Delta \vec{v}$ sagt aus:

- 1. Wenn auf einen Körper eine Kraft \vec{F} ausgeübt wird, erhält dieser eine Zusatzgeschwindigkeit $\Delta \vec{v}$ (d.h. die Geschwindigkeit des Körpers ändert sich).
- 2. Die Richtung der Kraft und die Richtung der Zusatzgeschwindigkeit sind gleich.
- 3. Je größer die Einwirkungsstärke der Kraft \vec{F} ist, desto größer ist das Tempo der Zusatzgeschwindigkeit $\Delta \vec{v}$ (bei jeweils gleicher Einwirkungsdauer und Masse).
- 4. Je länger die Einwirkungsdauer Δt ist, desto größer ist das Tempo der Zusatzgeschwindigkeit $\Delta \vec{v}$ (bei jeweils gleicher Kraft und Masse). 5. Je größer die Masse m des Körpers ist, desto
- 5. Je größer die Masse m des Körpers ist, desto kleiner ist das Tempo der Zusatzgeschwindigkeit $\Delta \vec{v}$ (bei jeweils gleicher Kraft und Einwirkungsdauer).

Aufgabe: Prototyp zur didaktischen Rekonstruktion

- Im Moodle-Kurs finden Sie das Arbeitsblatt zur didaktischen Rekonstruktion als Vorlage:
 - Füllen Sie für das Beispiel des zweiten Newton'schen Axioms die drei Aspekte der Elementarisierung aus.
 - Notieren Sie auch, welche Aspekte aus der Perspektive der SchülerInnen (z.B. Schülervorstellungen) bei der Konstruktion der Sachstruktur für den Unterricht berücksichtigt wurden.

Hausaufgabe

Didaktische Rekonstruktion am Beispiel des Trägheitsprinzips:

In einem Inertialsystem verharrt jeder Körper so lange im Zustand der Ruhe oder der gleichförmig, geradlinigen Bewegung, wie keine Nettokraft auf ihn wirkt.

- Füllen Sie für dieses Beispiel das Arbeitsblatt zur didaktischen Rekonstruktion aus.
 - Berücksichtigen Sie dabei insbesondere die Ziele des Unterrichts und die Schülerperspektive.
- Abgabe über Moodle bis Mittwoch, den 22.10.25 um 12 Uhr.
 - Sie dürfen in Gruppen von bis zu drei Personen abgeben.

