

RUHR-UNIVERSITÄT BOCHUM

ADVANCED MATERIALS PROCESSING AND MICROFABRICATION

Einführungsveranstaltung

Struktur

- 1. Vorstellung
- 2. Lernziele
- 3. Lehrinhalte
- 4. CALPHAD & Übungen
- 5. Zusammenfassung

Kurze Vorstellung der Kursteilnehmer

Welches B.Sc. Studium? Neu an der RUB? Erwartungen an die LV? Bisherige Erfahrungen und Eindrücke bzgl. der Werkstoffe-Lehre an der RUB? Welche Themen sind Motivation für die Wahl der Vertiefung von besonderem Interesse? "Werkstoff- und Microengineering"?

LERNZIELE LEHRINHALTE

Lernziele

• Vertiefung der werkstofftechnischen Kenntnisse

2

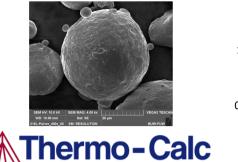
• Kennenlernen moderner Fertigungsverfahren

3

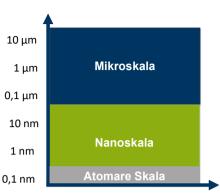
• Verständnis der physikalischen Hintergründe der Sonderverfahren

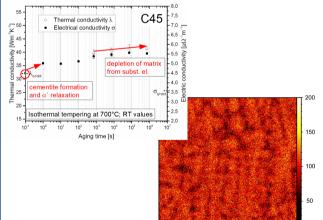
4

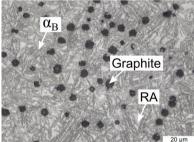
• Fähigkeit zur fertigungs- und anforderungsgerechten Auswahl von Werkstoffen



• Vermögen zur Auswahl geeigneter Fertigungsverfahren und Verfahrensparameter für die Herstellung gegebener Maschinenbauteile




Lehrinhalte


- High nitrogen steels
- Pulvermetallurgie
- Heiß-Isostatisches Pressen
- Wärmebehandlung und -leitfähigkeit
- Bainitische Stähle
- Additive Fertigung
- Thixotrope Formgebung
- Prozessierung von Mehrphasenstählen
- Wasserstoffversprödung
- Oberflächenprozessierung
- Mikrosystemtechnik
- Nanotechnologie

200 µm

CALPHAD & Übungen

VLEin- und
Mehrphasen-

stähle

VLNi-Basis
Superlegierungen

VLWasserstoffversprödung

VL Thixotrope Formgebung **VL** PM-Hochleistungswerkstoffe

ÜBUNG 1Simulation der
IK-Glühung

ÜBUNG 2HIP-Quench &
Ni-Wärmebeh.

ÜBUNG 3Berechnung von
Property Maps

ÜBUNG 4Berechnungen
zu SLPS & Thixo

ÜBUNG 5Image Analysis
mit ImageJ

CALPHAD & Übungen

VL Leg.-Entwicklung Cr-Stahlguss

VL High Nitrogen Steels **VL** Bainit **VL**Thermophys.
Eigenschaften

VLAdditive
Fertigung

ÜBUNG 6Calphad für die
Leg.-Entwicklung

ÜBUNG 7

Berechnung von Gas-Festkörper-Gleichgewichten

Grundsätzlicher Aufbau der Vorlesungsunterlagen

- Die Vorlesungsunterlagen sind wie folgt aufgebaut:
 - Struktur der Vorlesung
 - Frage- / Problemstellung
 - Inhaltsteil
 - Zusammenfassung

An dieser Stelle wird es zu jedem Vorlesungsblock eine kurze Zusammenfassung in Form von Stichpunkten geben.

- Überprüfungsfragen
 - An dieser Stelle wird es zu jedem Vorlesungsblock Überprüfungsfragen geben. Die Fragen dienen dazu, das eigene Verständnis der Inhalte zu überprüfen und sich u.a. damit auf die Prüfung vorzubereiten
- Literaturempfehlungen
 - An dieser Stelle wird zum Thema passende Fachliteratur (Bücher, Zeitschriftenartikel, Tagungsbandbeiträge) aufgeführt sein.

Weitere Informationen

Vorlesung

- Moodle-Kurs: "Advanced Materials Processing and Microfabrication (139020-WiSe25/26)" Passwort: AMPM_MSc_WME
- pdf-Dateien der Vorlesungsfolien; Videos zu den VL-Teilen von Prof. Ludwig
- Ergänzende Unterlagen (Paper, Datenblätter etc.) werden im Kurs bereitgestellt (Eigenstudium).
- Bitte nutzen Sie das im Kurs bereitgestellte Diskussionsforum für Fragen (keine E-Mails)!

Prüfung – 3-stündige Klausur im Prüfungszeitraum

- Fragenkataloge am Ende jeder Vorlesungseinheit und innerhalb der Vorlesung dienen als Vorbereitung
- Kurzfragen mit Kurzantworten/Skizzen
- Verständnis der Zusammenhänge
- Kenntnis der Fertigungsverfahren

RÉSUMÉ

Zusammenfassung

HINWEIS: Am Ende eines jeden Vorlesungsblocks wird eine kurze Zusammenfassung in Form von Stichpunkten geben.

Überprüfungsfragen

HINWEIS: Zu jedem Vorlesungsblock gibt es zum Ende eines Vorlesungsblocks Überprüfungsfragen.

Die Fragen dienen dazu, das eigene Verständnis der Inhalte zu überprüfen und sich u.a. damit auf die Prüfung vorzubereiten. Das alleinige Lernen ("Auswendiglernen") von Überprüfungsfragen ist jedoch <u>nicht</u> ausreichend!

Vielen Dank für Ihre Aufmerksamkeit und Ihre Mitarbeit!

Prof. Dr.-Ing. Sebastian Weber Fakultät für Maschinenbau Lehrstuhl Werkstofftechnik Universitätsstr. 150, IC 03-319 D-44801 Bochum

