
Lehrstuhl für Kryptologie
Eike Kiltz
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Exercise 1:
What does Kerckhoff’s principle state?

A. Security should rely on keeping the algorithm secret
B. The key should be as long as the message
C. A cryptosystem should be secure even if everything except the key is public

Solution: [C]. According to Kerckhoff’s principle says we should assume that the cryptosys-
tem is public, to avoid security through obscurity.

Exercise 2:
What operation does the One-Time Pad use for encryption?

A. AND operation
B. XOR operation (⊕)
C. Modular addition

Solution: [B]. As defined in the lecture the OTP uses XOR, implementing the OTP with
AND gives neither correctness nor security. You could define a variant of the one-time pad
using modular addition.

Exercise 3:
What is the key property that makes XOR suitable for OTP?

A. It is self-inverse: (M ⊕K)⊕K = M
B. It always produces output of 1
C. It compresses the data

Solution: [A]. Because XOR is invertible we can recover the message as long as we know
the key.

Exercise 4:
What makes OTP provably secure?

A. The ciphertext is uniformly distributed regardless of the plaintext
B. The XOR operation is fast
C. The key is very long

Solution: [A]. As the ciphertext has the same (uniform) distribution for every plaintext, the
adversary cannot deduce any information about the plaintext.

Exercise 5:
What probability does each possible ciphertext have in OTP for a given plaintext?

A. 0



B. 1
C. 1

2n
, where n is the message length in bits

D. 1
2n/2 , where n is the message length in bits

Solution: [C]. The ciphertext looks uniform, and there are 2n possible bitstrings of length
n, therefore any individual ciphertext occurs with probability 1

2n
.

Exercise 6:
What does “real or random” mean in cryptographic security?

A. The key is either real or randomly generated
B. The message is either meaningful or random
C. The adversary cannot distinguish actual ciphertexts from random data

Solution: [C]. The “real or random” paradigm is useful because if the adversary cannot
distinguish valid ciphertexts from random data, then he also cannot distinguish between
ciphertexts of different plaintexts.

Exercise 7:
What happens if you reuse a key in OTP?

A. Security is broken; patterns can be revealed
B. The encryption becomes faster
C. Nothing, it remains secure

Solution: [A]. Suppose we use the key K for messages M1 and M2. Based on the ciphertexts
C1 = M1 ⊕K and C2 = M2 ⊕K the adversary can deduce

M1 ⊕M2 = (M1 ⊕K)⊕ (M2 ⊕K) = C1 ⊕ C2.

Exercise 8:
What alternative operation to XOR would still provide OTP security?

A. OR operation
B. Modular addition
C. AND operation

Solution: [B]. If K is uniformly distributed over {0, . . . , n− 1} then M +K mod n is also
uniform, regardless of M .

Exercise 9:
What is the correct relationship in OTP correctness?

A. Dec(K,Enc(K,M)) = M
B. Enc(K,Dec(K,C)) = C
C. Enc(M,K) = Dec(M,K)

Solution: [A]. We should recover the original message by decrypting using the same key.

Exercise 10:
What assumption about the adversary is necessary for OTP security proofs?

A. The adversary is computationally bounded
B. The adversary cannot see ciphertexts
C. The adversary cannot influence key sampling



Solution: [C]. The ciphertext looks uniform to the adversary because he has no information
about the key. If the adversary could influence key sampling, then the ciphertext would not
be uniform anymore and information about the message will leak.

Exercise 11:
Show that the OTP where ⊕ is replaced with (mod n) is correct and secure.
Solution: We define the following encryption scheme on messages M ∈ {0, . . . , n− 1}, and
key K uniform in {0, . . . , n− 1}.

Enc(K,M) = M +K mod n

Dec(K,C) = C −K mod n.

For correctness we need to show that Dec(K,Enc(K,M)) = M for all K and M . This
follows because

Dec(K,Enc(K,M)) = (M +K mod n)−K mod n

= (M +K −K) mod N

= M mod N

= M,

because 0 ≤M < N .
For security we use the “real or random” paradigm. The adversary should not be able
to distinguish between a random ciphertext and a valid encryption of a message. A valid
encryption of a message M is modelled by the following Attack(M) game

Attack(M) :

K ← {0, . . . , n− 1}
C := M +K mod n

return C

As encryptions should look uniform, we want that Pr[Attack(M) = C] = 1
n
for all M and C.

This fact follows because

Pr[Attack(M) = C] = Pr[M +K mod n = C]

= Pr[K = (C +M) mod n]

=
1

n

as K is chosen uniformly at random, so the value of C + M is as likely as any other. As
Attack(M) is indistinguishable from a randomly chosen ciphertext our variation of the one-
time pad is secure.

Exercise 12:
Consider the following variant of the OTP.

A. Let K = (K1, K2) ∈ {0, 1}2n be a uniformly distributed key. Encryption is defined as

Enc((K1, K2),M) := M ⊕K1 ⊕K2.



Provide a correct decryption procedure and show its security.
Solution: This cipher is essentially equivalent to encrypting a message with one-time
pad twice with independent keys. The decryption procedure should be defined as

Dec((K1, K2), C) = C ⊕K1 ⊕K2.

To prove correctness we need to show that Dec((K1, K2),Enc((K1, K2),M)) = M .
This follows because

Dec((K1, K2),Enc((K1, K2),M)) = Dec((K1, K2),M ⊕K1 ⊕K2)

= M ⊕K1 ⊕K2 ⊕K1 ⊕K2

= M ⊕ (K1 ⊕K1)⊕ (K2 ⊕K2)

= M ⊕ 0⊕ 0

= M.

To prove security we need to show that outputs from the following Attack(M) game
look uniform for any message M ∈ {0, 1}n.

Attack(M) :

K1 ← {0, 1}n

K2 ← {0, 1}n

C := M ⊕K1 ⊕K2

return C

So

Pr[Attack(M) = C] = Pr[M ⊕K1 ⊕K2 = C]

= Pr[K2 = M ⊕K1 ⊕ C]

= 1/2n.

B. Show that the cipher from part A is still secure if K1 is known.
Solution: Recall that the cipher essentially encrypts a message using two independent
keys. Intuitively, if one key is known, then the second key should still provide security.
We model leakage of K1, by giving the adversary access to K1 as part of our Attack(M)
game

Attack(M) :

K1 ← {0, 1}n

K2 ← {0, 1}n

C := M ⊕K1 ⊕K2

return (C,K1)

Let M ∈ {0, 1}n be any message. For every ciphertext C and leaked key K̃ we have



that

Pr[Attack(M) = (C, K̃)] = Pr[(M ⊕K1 ⊕K2, K1) = (C, K̃)]

= Pr[M ⊕K1 ⊕K2 = C ∧K1 = K̃]

= Pr[K2 = M ⊕ K̃ ⊕ C] · 2−n

= 2−n · 2−n

= 2−2n.

So even if the K1 part of the key leaks, the joint distribution of (C,K1) still looks
uniform for every possible message, so security of preserved.

C. Let K ∈ {0, 1}n be a uniformly distributed key. Encryption and decryption are defined
as

Enc(K,M) := K; Dec(K,C) := C

Show that encryption is secure. Would you recommend using the cipher?
Solution: To show security we need that encryptions of the message do not leak any
information about the message. We redefine our Attack(M) game as

Attack(M) :

K ← {0, 1}n

C := K

return C

Now Pr[Attack(M) = C] = 2−n easily follows for all messages M and ciphertexts C as
Pr[Attack(M) = C] = Pr[K = C] = 2−n because K is uniform.
While the encryption is secure, it is also useless as decryption is not possible. When
we decrypt, we recover Dec(K,Enc(K,M)) = Dec(K,K) = K the key rather than the
message.


