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Combinatorial and high-throughput methods for the investigation of novel materials

Exemplaric results for intermetallic systems:
Quaternary shape memory alloys
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Prof. Dr.-Ing. A. Ludwig | www.rub.de/wdm | R. Zarnetta, R. Takahash, V. Srivastava, M. L. Young, A. Savan, Y. Furuya, S. Thienhaus, B. MaaR, M. Rahim, J.
Frenzel, H. Brunken, Y. S. Chu, R. D. James, |. Takeuchi, G. Eggeler, A. Ludwig (2010), Identification of quaternary shape memory alloys with “zero” thermal
hysteresis and unprecedented functional stability, Advanced Functional Materials, 20, 1917 — 1923.
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Combinatorial materials research for novel intermetallic alloy systems

Understanding of the influence of alloying elements
on phase stabilities in Ni- and Co-based superalloys
in ternary model systems (TCP phases)

» high-temperature processing of materials libraries (> 1000°C)

* identification of compositions showing particular phases / or properties
* high-throughput oxidation studies
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High entropy alloys
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George, Raabe, Ritchie, Nat Rev Mater 4, 515-534 (2019).

https://doi.org/10.1038/s41578-019-0121-4
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J. W. Yeh et al. provided a rationale for HEAs:
they hypothesized that the presence of multiple (five or more) elements in
near-equiatomic proportions would increase the configurational entropy of HEA: 5 or more elements in

mixing.by an amount suf'fi.cient to overcc?me the enth.alpies of com_pound ' relatively high concentrations
formation, thereby deterring the formation of potentially harmful intermetallics.
(5-35 at.%)

This was a counterintuitive notion because the conventional view — likely
based on binary phase diagrams in which solid solutions are typically found at
the ends and compounds near the centres — was that the greater the number For equimolar alloys
of elements in concentrated alloys, the higher the probability that some of the 3 AR
elements would react to form compounds.

But Yeh et al. reasoned that, as the number of elements in an alloy increased,
the entropic contribution to the total free energy would

overcome the enthalpic contribution and, thereby, stabilize solid solutions.

Single-phase, solid-solution HEAs

with face-centred cubic (fcc), body-centred cubic
(bcc),

hexagonal close- packed (hcp) and orthorhombic
crystal structures have been identified.

Number of elements

H. Liu, etal., SusMat.,1:482-505 (2021).

Yeh, J. W. etal.
Nanostructured high-entropy alloys with multiple principal elements:

novel alloy design concepts and outcomes.
Adv. Eng. Mater. 6, 299-303 (2004).
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Box 1| Thermodynamics of phase stability

An alloy created by combining two pure elements A and B can form a solid solution or one or more intermetallic phases,
depending on the relative free energies of the following reactions:

A +B=AB (solution) : AG,;, = AH,;, —TAS,,ix (1)

A + B =AB (intermetallic) : AG; = AH; - TAS; (2)

where AG ., AH, . and AS,, are the Gibbs free energy, enthalpy and entropy of mixing, respectively; AG,, AH; and AS; are
the corresponding values for the formation of an intermetallic compound with AB stoichiometry; and T is the absolute
temperature. If, instead, two intermetallic compounds with different stoichiometries form (such as AB, or A,B), additional
expressions similar to Eq. 2 are needed for each compound.

At thermodynamic equilibrium, the phases present in the alloy depend on whether the Gibbs free energy of mixing (Eq. 1)
is more or less negative than the free energies of formation (Eq. 2) of all possible intermetallic compounds comprising
the elements A and B (thatis, AB, where i,j =1, 2, 3,...) present individually or as mixtures. Note that it is not necessary
for A + Bto transform entirely into A B-type intermetallics; rather, intermetallics can precipitate within an A-rich or
B-rich (terminal) solid solution, in which case the relevant free-energy change involves the sum of the free energy of mixing
of the terminal solid solution and the free energy of formation of the intermetallic. Additionally, if intermetallic compounds
are not favoured and only a solid solution forms, the solid solution need not be random (or ideal) because the different
atomic species can cluster or order on the lattice, depending on whether AH,, is positive or negative, respectively. Another
possibility is that, instead of forming a single solid solution, the mixture decomposes into two solid solutions with different
compositions, crystal structures and/or lattice parameters.

The situation becomes increasingly more complex as more alloying elements are added (A + B +C + ...) because the
number of possible phases that can co-exist correspondingly increases, as given by the Gibbs phase rule. If some of those
phases are intermetallic compounds, they can be of several different types, even if we consider just the binary pairs
(A-B,B-C, A—C, ...).Inreality, ternary and higher-order intermetallics, which need not all be line compounds, can also
form, rapidly escalating the number of possibilities. In cases in which the compounds exhibit a compositional range of
stability, the energies of the defects needed to accommodate deviations from stoichiometry (for example, anti-site
defects) have to be accounted for. Some of the possible mixing reactions are shownin FIG. 1.

Even in simple A-B-type alloys, there is rarely complete miscibility across the entire composition range (from pure A
to pure B). Rather, binary-phase diagrams typically exhibit solid solutions near the pure-element ends and a variety of
intermetallic compounds in between, many of which are brittle. The problem is exacerbated in multi-element alloys, in
which there are many more element pairs that can attract each other and, therefore, an increased number of potentially
brittle intermetallics.
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The traditional reluctance of metallurgists to work with concentrated, multi-element alloys was turned on its head by Yeh
and co-workers', who proposed that the increased configurational entropy of mixing in alloys comprising multiple alloying
elements (Eqg. 1) would counteract the tendency for compound formation (Eq. 2). By adding more and more elements at
near-equiatomic concentrations, it would be possible to stabilize solid solutions at the expense of intermetallics.

Yeh and co-workers' simplified the problem by assuming that the considered solid solution is ideal, in which case AH__,
in Eq. 1 is zero, and that the competing intermetallic compound is perfectly ordered, in which case AS;in Eq. 2 is zero.

The relative stabilities of the solid solution and intermetallic compound then depend on whether —TAS_, (Eqg. 1) is more
negative than AH; (Eq. 2). The ideal entropy of mixingis given by:

AS . =-RZxInx; (3)

where R is the gas constant and x, is the mole fraction of the i*" element. In an equiatomic alloy, x, = x, = x, and so on, and
the mixing entropy becomes:

AS .. =Rlnn (4)

where nis the number of elements in the alloy, yielding values for AS__ of 1.39R, 1.61R and 1.79R for equiatomic alloys
containing 4, 5 and 6 elements, respectively.

Based on this simplification, they concluded that, in alloys with a high number of principal elements (say, n=5),
the entropic contribution to the free energy (-T_AS__ ) at the melting temperature T_ is comparable to the formation
enthalpies (AH,) of strong intermetallic compounds such as NiAl and TiAl, thereby suppressing compound formation,
except those with large heats of formation, such as strong ceramic compounds (oxides, carbides, nitrides and silicides),
and more easily yielding random solid solutions during solidification. Consequently, Yeh and co-workers defined high-
entropy alloys as those with five or more elements in equiatomic concentrations. To allow for flexibility in alloy design,
they relaxed the equiatomic requirement and permitted a range of concentrations from 5 to 35 at.% for each constituent
element. However, this simple criterion based on the number of alloying elements is not sufficient to predict single-phase,
solid-solution formation in multi-element alloys.
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HEA et al. ...

High entropy alloys (HEAs),

High entropy materials (HEM), e.g. high entropy oxides (HEOs)

Complex concentrated alloys (CCAs)

Multiple principal element alloys (MPEAs)
Compositionally complex solid solutions (CCSS)

% Conventional Alloy
® Equiatomic HEA
. Non-equiatomic HEA
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> high entropy effect:
» High configurational entropy favor solid solution
phases over competing intermetallics.

> lattice distortion effect:

+ Lattice distortions are more severe than
in conventional alloys, and increase hardnes
reduce electrical / thermal conductivity

> sluggish diffusion effect:
» Diffusion is sluggish in HEAs.

> ‘cocktail’ effect:

« The result of synergistic mixture is unpredictable
and greater than the sum of the parts.

Z.Li, et al., JOM, 69, 2099 (2017). 9
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HEAs: Cantor alloy, CrMnFeCoNi

The CrMnFeCoNi alloy was one of the first equiatomic
HEASs reported to crystallize as a single-phase fcc solid solution.

It was later discovered that it decomposes into metallic (bcc Cr) and
intermetallic (L1,-NiMn and B2-FeCo) phases below about 800°C.

HEAs: Senkov alloy, TiZrHfNbTa

bce TiZrHfNDbTa alloy.

Compared with extensive information available on the Cantor alloy and
its derivatives, little is known about the fundamental

structure—property relations in bcc HEAs, especially the refractory HEAs

Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B.

Microstructural development in equiatomic multicomponent alloys.
Mater. Sci. Eng. A 375, 213-218 (2004).
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Example for search of new HEAs

nature |
materials

LETTERS

https://doi.org/10.1038/541563-020-0750-4

") Check for updates

Natural-mixing guided design of refractory
high-entropy alloys with as-cast tensile ductility

Shaolou Wei', Sang Jun Kim?, Jiyun Kang', Yong Zhang?, Yongjie Zhang*, Tadashi Furuhara?,

Eun Soo Park®?2 and Cemal Cem Tasan®'®

Metallic alloys containing multiple principal alloying elements
have created a growing interest in exploring the property
limits of metals and understanding the underlying physical
mechanisms. Refractory high-entropy alloys have drawn par-
ticular attention due to their high melting points and excellent
softening resistance, which are the two key requirements for
high-temperature applications. Their compositional space is
immense even after considering cost and recyclability restric-
tions, providing abundant design opportunities. However,
refractory high-entropy alloys often exhibit apparent brittle-
ness and oxidation susceptibility, which remain important
challenges for their processing and application. Here, utilizing
natural-mixing characteristics among refractory elements,
we designed a Ti;;V,;Nb,;Hf,, refractory high-entropy alloy
that exhibits >20% tensile ductility in the as-cast state, and
physicochemical stability at high temperatures. Exploring the
underlying deformation mechanisms across multiple length
scales, we observe that a rare p’-phase plays an intriguing role
in the mechanical response of this alloy. These results reveal
the effectiveness of natural-mixing tendencies in expediting
high-entropy alloy discovery.

The quick-emerging paradigm of metallic alloy development
with multiple principal elements has rendered salient advantages

Fundamental Aspects of Materials Science and Engineering

Moreover, because of their apparent brittleness below homologous
temperatures’, fundamental investigations of the deformation
mechanisms of RHEAs are scant, especially compared to the abun-
dant literature for face-centred cubic (fcc)-structured high-entropy
alloys (HEAs)®*. We reveal in this work that by following a
Cantor-like approach' that exploits the natural-mixing characteris-
tics among refractory elements to minimize casting segregation, it
is possible to expediently guide the RHEA composition search, and
thereby to achieve desirable combinations of strength, ductility and
high-temperature stability.

The first step of our composition-searching strategy involves
quantitative elemental partition assessment at the mesoscale, by
probing the largest single-phase region inherited from natural mix-
ing among refractory elements. To achieve this, a nine-component
master RHEA consisting of equal atomic portions of Ti, V, Cr, Zr,
Nb, Mo, Hf, Ta and W was cast via arc melting. As displayed in Fig.
la, four predominant phase-separated zones develop in this master
RHEA's microstructure, respectively enriched in Ti, Mo, Cr and Hf
(see the markers as a guide in Fig. 1a). Applying energy dispersive
spectroscopy (EDS) elemental mapping and point analyses to the
largest single-phase region that spans over almost the full micro-
structure, and considering alloying elements >10at.% as princi-
pal constituents (for more details, see Supplementary Note 1), we

https://doi.org/10.1038/s41563-020-0750-4

20 (deg)
40 5.0

TiagVysNDogHf 4

6.0

Fig. 1| The strategy of composition search among refractory elements. a, As-cast microstructure of a master RHEA consisting of the nine refractory
elements in equal atomic portions. The corresponding EDS mapping results reveal the distinctive presence of four phase-separated regions, respectively
enriched in Ti, Mo, Cr and Hf. b, As-cast microstructures of the four alloys designed using the compositions excerpted from the corresponding regions

in a (more details are provided in Supplementary Fig. 1, Supplementary Table 1 and Supplementary Note 1). ¢, Microstructural characterization of the
recrystallized TiV,sNb,sHf,, RHEA whose composition was inherited from the largest single-phase region in a (denoted Ti-V-Nb-Hf). In Supplementary
Note 1, we provide systematic assessments of the reliability for the approach and discuss the plausible thermodynamic principles in terms of universality.
Sub-figures presented from top to bottom in ¢ are synchrotron X-ray diffraction patterns, EBSD phase map and EDS elemental distribution assessment
of a selected area of interest (the white rectangle in the phase map). Magnifications of EBSD and EDS are identical. All the mesoscale characterizations
indicate that the TisgV,.Nb,;Hf,, RHEA preserves a single-phase bcc structure, macroscopically, with a lattice parameter a=3.323 A.
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High entropy materials (oxides, nitrides, ...)

REVIEWS

’ 1} Check for updates

High-entropy ceramics

1.2 1.2 L2k
Corey Oses » Cormac Toher and Stefano Curtarolo a Rock-salt b Fluorite c Perovskite d AIB, hexagonal

structure structure structure structure

e C40 structure
Abstract | Disordered multicomponent systems, occupying the mostly uncharted centres of phase
diagrams, were proposed in 2004 as innovative materials with promising applications. The idea was
to maximize the configurational entropy to stabilize (near) equimolar mixtures and achieve more
robust systems, which became known as high-entropy materials. Initial research focused mainly on
metal alloys and nitride films. In 2015, entropy stabilization was demonstrated in a mixture of
oxides. Other high-entropy disordered ceramics rapidly followed, stimulating the addition of more
components to obtain materials expressing a blend of properties, often highly enhanced. The

i

Fig. 2| High-symmetry structures of high-entropy ceramics. Structures and compositions include the rock-salt
A i i . i X . structure (space group Fm3m #225, AFLOW (Automatic Flow Framework for Materials Science)” prototype label***
coatings, thermoelectrics, CatalVSts' batteries and wear-resistant and corrosion-resistant c oatings. AB_cF8_225_a_b) (oxides, carbides, nitrides) (part a), the fluorite structure (Fm3m #225, AB2_cF12_225_a_c) (oxides) (part b),

In this Review, we discuss the current state of the disordered ceramics field by exam]ning the the perovskite structure (Pm3m #221, AB3C_cP5_221_a_c_b) (oxides) (part c), the AlB, hexagonal structure (P6/mmm #191,
AB2_hP3_191_a_d)(borides) (part d) and the C40 structure (P6,22 #180, AB2_hP9_180_d_j) (silicides) (parte).

systems were soon proven to be useful in wide-ranging technologies, including thermal barrier

applications and the high-entropy features fuelling them, covering both theoretical predictions and
experimental results. The influence of entropy is unavoidable and can no longer be ignored. In the
space of ceramics, it leads to new materials that, both as bulk and thin films, will play important
roles in technology in the decades to come.

www.nature.com/articles/s41578-019-0170-8

compositionally complex ceramics
high entropy metal sublattice ceramics

J. Appl. Phys. 130, 150903 (2021); doi: 10.1063/5.0062523
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Discovery and optimization of nanostructured functional materials

Compositional effects on solar water splitting

in Bi(V-Mo-X)O,, X: Ta, W, Nb
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Energy & Environmental Science
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1.23 V vs. RHE (0.1 M borate buffer, pH =9)

Y.U. Kayran, A. Ludwig, W. Schuhmann (2017)
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High entropy

RESEARCH | REVIEW

nanomaterials

A High entropy mixing in an FCC lattice
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Polyelemental nanoparticles
(5 elements, immiscibility )

High entropy alloy
nanoparticles
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High entropy alloys
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2018
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Fig. 1. Development of high-entropy nanoparticles with multielemental
composition and enhanced functionality. (A) Schematic showing high-
entropy mixing in a face-centered cubic lattice. Multiple elements will occupy the
same lattice site randomly to form a high-entropy structure such as a high-
entropy alloy. (B) The study of bulk high-entropy alloys has taken off and gained
substantial interests since 2004 (1, 3). In 2016, a multielemental nanoparticle
library was synthesized (though with immiscibility, and thus phase segregation),
followed by various single-phase, high-entropy nanoparticles with an
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B Increasing mixing (new materials)

High entropy oxide
nanoparticles
(10 elements

NH, 4 Nz+Hy

C Increasing functionality

RS
e
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Nanoscale Thermoelectrlc
extreme mixing Anode
(15 elements)
g Electrolyte
Cathode
Catalysis
vy v » a
Vovarvayayavy v e
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Energy storage and conversion

Thermo- and electro- catalysis

increasing number and range of elements (7, 8, 14, 20). Reprinted

from (14) with permission from Elsevier. (C) These high-entropy nano-
particles have found critical application in thermo- and electro-catalysis,
energy storage and conversation, and environmental and thermoelectric
technologies (29-31, 35, 36). Reprinted from (31) with permission
(copyright 2021 American Chemical Society) and from (35) with permission.
Other portions of the figure are reprinted from (7, 8) with permission, from
(20) with permission from Springer-Nature, and from (36) CC BY 4.0.

Yao et al., High-entropy nanoparticles: Synthesis-structure
property relationships and data-driven discovery, Science 376,
eabn3103 (2022), https://doi.org/10.1126/science.abn3103
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Multinary phases
High entropy nhanomaterials
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Fig. 2. High-entropy nanoparticle synthesis and structure. Thermodynamic kinetically controlled syntheses can be adjusted to form various nanoparticles

analysis of high-entropy mixing considers both entropy (A) and enthalpy featuring different degrees of structural and chemical ordering. (E) The

(B), which are mainly determined by the composition of high-entropy nano- Ellingham diagram [reprinted from (14) with permission from Elsevier] provides a

particles (8). (C) Thermal shock synthesis of high-entropy nanoparticles features  guide for composing either alloy (e.g., PtPdFeCoNiAuCuSn) (8) (F) or oxide

a high-temperature pulse for elemental mixing and then rapid temperature high-entropy nanoparticles (e.g., ZeCeHfCaMgTiLaYGdMnO,) (20) (G) according

quenching to maintain the high-entropy structure. (D) Temperature-time- to the oxidation potentials of each element. Reprinted from (20) with

transformation diagram describing how the cooling rates of high-temperature, permission from Springer Nature.
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Mixing non-mixable elements in

high entropy nhanomaterials
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Mixing non-mixable elements in
high entropy nanomaterials
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Maximize mixing in highly
polyelemental solid solution
alloy nanoparticles

Alfred Ludwig'*

In this issue of Matter, Yao et al. report on advanced non-equilibrium
high-temperature entropy-controlled synthesis of polyelemental
nanoparticles. They achieve extreme mixing of 15 metals, some of
them previously immiscible, in the form of a single phase solid solu-
tion. The compositionally tunable properties of such atomic scale
mixtures within a simple crystal structure makes them highly inter-
esting for the design of new materials, e.g., electrocatalysts.

https://doi.org/10.1016/j.matt.2021.06.015
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Combinatorial and high-throughput methods for the investigation of novel materials

Exploring quinary composition space: ,,high entropy*
alloys, multiple principal element alloys

Co-sputter deposition of
multinary materials libraries
from up to 5 elemental targets

Visualization Of mUItidimenSiOnal data Z. Li, A. Ludwig, A. Savan, H. Springer, D. Raabe (2018) Combinatorial
metallurgical synthesis and processing of high-entropy alloys, accepted
by Journal of Materials Research
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High-throughput characterization of materials libraries:
Composition and phase constitution of a quinary syste
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B. Xiao, A. Savan, X. Wang, A. Ludwig (2021) Phase constitution of the noble metal thin-film
complex solid solution system Ag-Ir-Pd-Pt-Ru in dependence of elemental compositions and 9
annealing temperatures, Nano Research, https://doi.org/10.1007/s12274-021-3516-7
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Materials informatics for XRD phase analysis:

Towards autonmous experimentation

ional 2ol (el XCA: autonomous companion agent
‘S:gflg%é ? https://doi.org/10.1038/543588-021-00059-2 that learns from fU"y synthetic data
® omwae;  ANd can predict phases from XRD patterns in real time
. for the rapid, accurate classification of XRD datasets
Crystallography companion agent for effective across materials domains, requires no labeling of experimental

high-throughput materials discovery data, and is robust despite varying degrees of texture, peak shifting,
peak broadening, phase mixing and amorphous disorder

Phillip M. Maffettone ®"25, Lars Banko?, Peng Cui?, Yury Lysogorskiy*, Marc A. Little?, Daniel Olds’,

Alfred Ludwig®® and Andrew I, Cooper 02 RESOURCE NATURE COMPUTATIONAL SCIENCE
The discovery of new structural and functional materials is driven by phase identification, often using X-ray diffraction (XRD). a Degenerate structures b £ lo sbomations
Automation has accelerated the rate of XRD measurements, greatly outpacing XRD analysis techniques that remain manual,
time-consuming, error-prone and impossible to scale. With the advent of aut: robotic scientists or self-driving labora- m— Low taxturing {1 11) ’
tories, contemporary techniq prohibit the integration of XRD. Here, we describe a computer program for the autonomous = = High taasturing {111)
characterization of XRD data, driven by artificial intelligence (Al), for the discovery of new materials. Starting from structural = Lowlickuing 011) 1
databases, we train an ensemble model using a physically accurate synthetic dataset, which outputs probabilistic classifica- = = High leaturing {11}
tions—rather than absolutes—to overcome the overconfidence in traditional neural networks. This Al agent behaves as a com- _ _
panion to the researcher, improving accuracy and offering substantial time ings. It is d trated on a diverse set of A Frm3m CoNi A
organic and inorganic materials characterization challenges. This method is directly applicable to inverse design approaches -
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Combinatorial and high-throughput methods for the investigation of novel materials

,High entropy* alloy nanoparticle libraries:

Cr-Mn-Fe-Co-Ni
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Systematic removal of each element from the quinary system yields a significant drop
in activity for all quaternary alloys, indicating the importance of the synergistic
combination of all 5 elements, likely due to formation of a single solid solution
phase with altered properties which enables overcoming limitations of single elements

T. Loffler, H. Meyer, A. Savan, P. Wilde, A. Garzén Manjdn, Y.-T. Chen, E. Ventosa, C. Scheu, A. Ludwig, W. Schuhmann
(2018) Discovery of a Multinary Noble Metal Free Oxygen Reduction Catalyst, Advanced Energy Materials1 802269
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Combinatorial and high-throughput methods for the investigation of novel materials
Cr-Mn-Fe-Co-Ni nanoparticle libraries:
ORR catalysts

High entropy effect
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T. Loffler, H. Meyer, A. Savan, P. Wilde, A. Garzon Manjén, Y.-T. Chen, E. Ventosa, C. Scheu, A. Ludwig, W. Schuhmann

(2018) Discovery of a Multinary Noble Metal Free Oxygen Reduction Catalyst, Advanced Energy Materialsl 802269
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What Makes High-Entropy Alloys Exceptional Electrocatalysts?
@ Minireviews ok
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What Makes High-Entropy Alloys Exceptional
Electrocatalysts ?
Tobias Loffler,* Alfred Ludwig, Jan Rossmeisl, and Wolfgang Schuhmann
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Figure 2. a) Schematic illustration of how each CCSS binding peak of the BEDP yields one curent wave in voltammetric measurements, where
activity and plateau current depend on binding energy shift and peak integral, respectively. Hence, adjusting the composition affects the current
i i i i wave proportions. In this representation, the absence of any mass-transport effects allows visibility of all current waves. b) Since the most active
Fundamental ASpeC'}S of Materla Is _SCIen ce and Engl neering current wave is of the highest interest, effects of element combination and compasition on the binding peak are presented, and the effect on the 2 3
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Thin-film and nanoparticle complex solid solution electrocatalyst libraries

Discovery of compositionally complex solid solutions
(,,high entropy alloys®) for electrocatalysis
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T. A. A. Batchelor, T. Léffler, B. Xiao, O.A. Krysiak, V. Strotkotter, J. K. Pedersen, C.M.

Ancewandte Chemie Int Ed (2021) 60 6932—-6937

Clausen, A. Savan, Y. Li, W. Schuhmann, J. Rossmeisl|, A. Ludwig Complex solid solution
electrocatalyst discovery by prediction and high-throughput experimentation,
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Unravelling composition-activity-stability trends in
high entropy alloy electrocatalysts using a data-guided
combinatorial synthesis strategy and computational modelling
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L. Banko, O. A. Krysiak, J. K. Pedersen, B. Xiao, A. Savan, T. Loffler,
S. Baha, J. Rossmeisl, W. Schuhmann, A. Ludwig (2022)
Unravelling composition-activity-stability trends in high entropy
alloy electrocatalysts by using a data-guided combinatorial
synthesis strategy and computational modelling,

Advanced Energy Materials, 2103312
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Questions

1) What are “high entropy alloys“?

2) Why is the name in some cases problematic?

(

(

(3) What is the promise of high entropy materials?

(4) What makes high entropy nanomaterials interesting?
(

5) Discuss (meta)stability and phase formation in the context of HEAs

Fundamental Aspects of Materials Science and Engineering 26
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Neue GroRprojekte
zur Erforschung von Hochentropie-Materialien
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Discovery: Cr-Mn-Fe-Co-Ni rivals Pt in oxygen reduction reaction

90 3 — F 2600
“high entropy alloy* and L 2400
80 S
catalysis” [ 2200
70 - . . g L
Yusenko et al., Scripta Materialia, 138, 22 (2017) 2000
. I 1800
o4  Yao et al., Science 359, 1489-1494 (2018)
I 1600
@ 501 - 1400 g
) <}
S 40 f120 3
rel
s - 1000
30
- 800
20 I 600
I 400
10 -
I 200
0 T S T T T 0
2018 2019 2020
2021 2022.
T. Loffler, H. Meyer, A. Savan, P. Wilde, A. Garzén Manjén, Y.-T. Chen, E. Ventosa, C. T. Batchelor, J. Pedersen, S. Winther, I. Castelli, K. Jacobsen, J. Rossmeisl (2019)
Scheu, A. Ludwig, W. Schuhmann (2018) High-Entropy Alloys as a Discovery Platform for Electrocatalysis,
Discovery of a Multinary Noble Metal Free Oxygen Reduction Catalyst, Joule, 2019, 3, 834

Advanced Energy Materials 1 802269
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Motivation for compositionally complex solid solutions (CCSS)
and surface atom arrangements (SAA)

Goal of
Collaborative Research Centre 1625
fundamental scientific understanding At
of CCSS surfaces, fcl)i‘li::c:)l:l;::ction ::re L:::Irlgy provision
i.e. mastering poly-elemental SAA
by fusion of simulation,
synthesis,
characterisation,
and data science

1.4.2024- 31.12.2027 (+ 2 x 4 years)
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SAA make CCSS exceptional electrocatalysts

Activity

Example:

-;js ”ﬁg "“"T.I .

binding

eaesm’@ {r\too weak

Ta
.
T.I/mgd \

Binding energy
as descriptor
for catalytic activity

W 4G a9 &%

Activity

Single element

(ideal surface)

Binding energ'y

Kousnbal4

Activity

Binary

Binding eneréy

intermetallic phase

Aouanbali4

Activity

Doped phase

L |
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—_—
Binding energy

Activity

Quinary
CCSS phase

V'
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Binding energiy

T. Loffler, A. Ludwig, J. Rossmeisl, W. Schuhmann (2021) What makes high-entropy alloys exceptional electrocatalysts? Angew. Chem. Int. Ed. 2021, 60, 26894
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Universal applicability and multifunctionality of CCSS

Hypothesis
Electrochemical properties of CCSS
can be tailored for any reaction,
if we can master their poly-elemental
surface atom arrangements

Activity

o
>

18t reduction

Aousnbaig

»

Binding energy i

Activity
Aousnbali4

>
Binding energy
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Exploration and exploitation of CCSS
by data-driven science

= Identify most active SAA
= Maximise their number

Composition optimisation

Phase | System selection A30B20oF20D20E10 A10B20F35D25E 10
- unfavourable composition favourable composition
* 9noble metals
e 126 quinary systems
4 g y Syster A20B20C20D20E20 - =
* 10" compositions in 1 system unfavourable system > o] i @
. Z o = 3
e 10’ of SAA for 1 composition = 5 = 5
< =} < =3
Q Q
M < <
Combinatorial explosion Z 8 A
=] c
— data-driven science 2 o — —
s} Binding energy Binding energy

o/ ‘ S
0 . 0 ‘ Bindingenergy' .Q

i

|

Az0B20F20D20E20
favourable system

$

@

Binding energy Binding energy

Activity
Aousnbali4

close to equiatomic enhanced red element content

Binding energy
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Theoretical basis for understanding and rational design of SAA

N Ru [N Ir B Rh [Pt W Pd [ total

A B 10°

0.020- 10-3
-6
0.015 10
10-°

0.0101 10_12
0.005 1 10"+
50008 0.5 1.0 0.0 0.5 1.0 15

AEpreq [€V]

T. Batchelor, J. Pedersen, S. Winther, I. Castelli, K. Jacobsen, J. Rossmeisl, Joule, 2019, 3, 1
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Adsorption energy regression
procedure d

&

DFT calculations
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C.M. Clausen, M.L.S. Nielsen, J.K. Pedersen, J. Rossmeisl (2022) Ab Initio to Activity: Machine Leaming-Assisted
Optimization of High-Entropy Alloy Catalytic Activity, High Entropy Alloys & Materials



CRC 1625: A unique team to address the challenge

Scale-bridging approach integrating

* theoretical prediction

* high-throughput and in-depth experiments
» data science

Atomic-scale details
and
statistical abundance
of SAA

ey LoV

Theory, Simulation
and Materia}s}» Informatics

Deep collaboration 1 ——
Sample and data lineage tracking B .
' Platform ‘ ;
Sputtering =

A: Theory, simulation, data-guided design and synthesis of CCSS surfaces
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Synthesis and Atomic-scale
Prediction of characterisation of large h terisati
SAA grain, smooth CCSS for b; Sa.:.?;l: (g(l)s:sa é%'l)
(A01, A03, A04) STM (A02, S) R V. ’
Synthesis and , o o
ol Nanoelectrochemical
CCSS films (A01, S) Dataset of electrochemicam S |
active single phase CCSS ‘ modification (C03) N
~ iﬁ:& ) compositions Modified CCSS

|

Dataset of single phase
CCSS compositions

L 4

Electrochemical
activity screening
(co1,co2) °

|

s Atomic-scale : = i :
characterisation by * F

APT, FIM, TEM .
(B01, B02, B03, B04) B

Research data management (INF)
Materials informatics,
Knowledge graph, Data fusion (A05, A06)

Dataset of identified SAA
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CRC 1625
Atomic-scale understanding and design of multifunctional
compositionally complex solid solution surfaces

@

: Theory, Simulation
and Materiaﬁ Informatics

4

Materials
Platform

Our holistic approach will fulfil the vision
to control SAA on the atomic scale and
across the surface
and enable design of ideal CCSS surfaces
for specific applications
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ERC Synergy Grant DEMI

UNIVERSITY OF u RUHR

. z UNIVERSITAT
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« High activity

 Natural abundance

 Stable
21 22 23 24 25 26 27 28 29 30
Sc [Ti vV Cr Mn Fe Co Ni Cu Zn
30 40 41 42 43 44 45 46 4T 48
Y Z No Mo Tc Ru Rh Pd Ag Cd
71 72 73 74 75 76 77 78 79 80 Z
lu H Ta W Re Os Ir Pt Au Hg %
103 104 105 106 107 108 109 110 111 112 ©
Lr Rf Db Sg Bh Hs Mt Ds Rg Cn

Oxygen reduction reaction
Oxygen evolution reaction
CO, reduction reaction
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Uncontrolled degradation
Complex materials space
No theory of metastability

\_

initial state
’ metastable state 1

‘\\Nab|e state 2

)

\‘\
Y inactive state
1 1 1 1 1 1 )
102 h 104 h 106 h time
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High entropy material nanoparticle
(all elements shown in blue)
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l low activity
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. high activity

l low activity

B

Ludwig, Mayrhofer et al. Nature Catalysis 2018; Arenz, Rossmeisl et al. in review

Fundamental Aspects of Materials Science and Engineering
Prof. Dr.-Ing. A. Ludwig | Materials Discovery and Interfaces

40



KAPITEL | CHART-HEADLINE

Element Adsorption
boundaries ﬁ energy :
regression  °

(Ru| " Pd|Ag Compute ad’ .g. Predict net
(i | Pt DFT data L@ coverage

Estimate
catalytic activity

Optimize alloy
composition

lons *
— A4

a v i Detector  Quadrupole mass filter Ton deflector
W ——o P
v ° .
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High vacuum —_—
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metastability
Directed evolution

Inverse design of
electrocatalysts

Composition

Micro-library before and after degradation

Size Function Loading Conditioning

Inter-particle
distance
@ Pt © gmal @ .Iow ‘ ink
unprotected pH
@ Ir @ medium solvent

medium
QR @ large :ﬁt &

. functionalised . Thin film
multi & high deposition

metallic
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New approaches for Accelerated
Materials Discovery

* Microlibraries

 Combinatorial processing platforms for
accelerated atomic scale characterization

Part of ERC Synergy Project DEMI

Directed Evolution of Metastable Electrocatalyst Interfaces
for Energy Conversion

(J. Rossmeisl, Copenhagen; M. Arenz, Bern; A. Ludwig,
Bochum; K. Mayrhofer, Erlangen)
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Exploring the quinary composition space

ternary: Ir-Pt-Ru

0100

YV AVAVAVAVAVAVAVAVAVAN
0 10 20 30 40 50 60 70 80 90 100

Ru

coverage: 17%

guaternary: Ir-Pt-Ru-Rh

Ru

quinary: Ir-Pt-Ru-Rh-Pd

Ru

Rh Pd

coverage: 0.6%

L. Banko, E. B. Tetteh, A. Kostka, T. H. Piotrowiak, O. A. Krysiak, U. Hagemann, C. Andronescu, W. Schuhmann, A. Ludwig (2023)
Microscale combinatorial libraries for the discovery of high entropy materials, Advanced Materials, 2207635
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New approach: Micro-Libraries

Co-sputtering through a single Creating a micro-library by
a b
80 * Pt = L
*

@ Ru . + -+
< Rh 5 -
» *

60 ¢+ Pd Tl

5
o

N
o

element concentration / at.%

»
-

LI SN I I T G S R

0 5 10 15 20 25
measurement position

Figure 2. High-throughput nanoscale characterization of microlibraries. a) SEM image of a microlibrary. The position of the FIB-cut cross-sectional
sample is indicated. b) Chemical composition along the FIB-cut sample from TEM—-EDX. The positions where the diffraction patterns were acquired

are highlighted on the high angle annular dark field TEM cross-sectional image (inset). c) Averaged diffraction patterns from the regions highlighted
in panel (b) as well as an exemplary raw diffraction pattern with overlaid Pt lines.

L. Banko, E. B. Tetteh, A. Kostka, T. H. Piotrowiak, O. A. Krysiak, U. Hagemann, C. Andronescu, W. Schuhmann, A. Ludwig (2023)
Microscale combinatorial libraries for the discovery of high entropy materials, Advanced Materials, 2207635
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Accelerated atomic-scale exploration of phase evolution in compositionally complex alloys

Combinatorial processing platforms for accelerated
phase evolution in HEM: Electrochemical Oxidation
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Fig. 3 | Oxidation depths. a-c, Element composition vs depth plots of the different states. Dashed lines indicate the mean oxidation depth with a

standard deviation beyond which the oxygen content remains at low values. d, Plot of the oxidation depths of the different states with mean value
and standard deviation. Each tip is represented by a different color.

V. Strotkotter, V. Li, F. Lourens, A. Kostka, T. Loffler, W. Schuhmann, A. Ludwig (2024) Self-Formation of Compositionally Complex

Surface Oxides on High Entropy Alloys Observed by Accelerated Atom Probe Tomography: A Route to Sustainable Catalysts,
Materials Horizons, 11, 4932-4941, 10.1039/D4MH00245H
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Summary and Outlook

Materials discovery Consistent and complete multidimensional
and optimization data-sets of compositionally complex materials

Synthesis of thin film materials libraries High-throughput characterization
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