Chapter 1
Contact Mechanics

1.1 Introduction

There has been considerable recent interest in the mechanical characterisation of
thin film systems and small volumes of material using depth-sensing indentation
tests with either spherical or pyramidal indenters. Usually, the principal goal of
such testing is to extract elastic modulus and hardness of the specimen material
from experimental readings of indenter load and depth of penetration. These
readings give an indirect measure of the area of contact at full load, from which
the mean contact pressure, and thus hardness, may be estimated. The test proce-
dure, for both spheres and pyramidal indenters, usually involves an elastic—
plastic loading sequence followed by an unloading. The validity of the results
for hardness and modulus depends largely upon the analysis procedure used to
process the raw data. Such procedures are concerned not only with the extrac-
tion of modulus and hardness, but also with correcting the raw data for various
systematic errors that have been identified for this type of testing. The forces
involved are usually in the millinewton (10~ N) range and are measured with a
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resolution of a few nanonewtons (10~ N). The depths of penetration are on the
order of microns with a resolution of less than a nanometre (1077 m). In this
chapter, the general principles of elastic and elastic—plastic contact and how

these relate to indentations at the nanometre scale are considered.

1.2 Elastic Contact

The stresses and deflections arising from the contact between two elastic solids
are of particular interest to those undertaking indentation testing. The most well-
known scenario is the contact between a rigid sphere and a flat surface as shown
in Fig. 1.1.
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Fig. 1.1 Schematic of contact between a rigid indenter and a flat specimen with modulus
E. The radius of the circle of contact is a, and the total depth of penetration is h,. h, is the
depth of the circle of contact from the specimen free surface, and h; is the distance from
the bottom of the contact to the contact circle.

Hertz" found that the radius of the circle of contact a is related to the in-
denter load P, the indenter radius R, and the elastic properties of the contacting
materials by:
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The quantity E” combines the modulus of the indenter and the specimen and
is given by’:

(1.2b)

where the primed terms apply to the indenter properties. E’ is often referred to
as the “reduced modulus” or “combined modulus” of the system. If both con-
tacting bodies have a curvature, then R in the above equations is their relative
radii given by:
L. + s (1.2¢)
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In Eq. 1.2¢ the radius of the indenter is set to be positive always, and the ra-
dius of the specimen to be positive if its center of curvature is on the opposite
side of the lines of contact between the two bodies.

It is important to realize that the deformations at the contact are localized
and the Hertz equations are concerned with these and not the bulk deformations
and stresses associated with the method of support of the contacting bodies. The

deflection h of the original free surface in the vicinity of the indenter is given
by:
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It can be easily shown from Eq. 1.2d that the depth of the circle of contact
beneath the specimen free surface is half of the total elastic displacement. That
is, the distance from the specimen free surface to the depth of the radius of the
circle of contact at full load is h, = h, = hy/2:

The distance of mutual approach of distant points in the indenter and speci-
men is calculated from
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Substituting Eq. 1.2d into 1.2a, the distance of mutual approach is expressed
as:
2
a
f=s = 1.2
= (1.26)

For the case of a non-rigid indenter, if the specimen is assigned a modulus of
E’, then the contact can be viewed as taking place between a rigid indenter of
radius R. & in Eq. 1.2e becomes the total depth of penetration h, beneath the
specimen free surface. Rearranging Eq. 1.2e slightly, we obtain:

P =§E"'R‘/211f’/2 (1.2g)
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hough the substitution of E for the specimen modulus and the associated
assumption of a rigid indenter of radius R might satisfy the contact mechanics of
the situation by Egs. 1.2a to 1.2g, it should be realized that for the case of a non-
rigid indenter, the actual deformation experienced by the spemmen is that ob-
tained with a contact with a rigid indenter of a larger radius R" as shown in Fig.

1.2. This larger radius may be computed using Eq. 1.2a with E' in Eq. 1.2b set as
for a rigid indenter. In terms of the radius of the contact circle a, the equivalent
rigid indenter radius is given by*:

3
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There have been some concerns raised in the literature’ about the validity of
the use of the combined modulus in these equations but these have been shown
to be invalid.*® Even if the deformation of the indenter is accounted for, the re-
sult, correctly interpreted, is equivalent to a rigid indenter in contact with a
compliant specimen.




4 Nanoindentation

The mean contact pressure, p,,, is given by the indenter load divided by the
contact area and is a useful normalizing parameter, which has the additional
virtue of having actual physical significance.
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Combining Egs. 1.2a and Eq. 1.2i, we obtain:
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The mean contact pressure is often referred to as the “indentation stress™ and
the quantity a/R as the “indentation strain.” This functional relationship between
pm and a/R foreshadows the existence of a stress—strain response similar in na-
ture to that more commonly obtained from conventional uniaxial tension and
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compression tesis. in both cases, a “!!" elastic condition ylelus a linear re-

sponse. However, owing to the localized nature of the stress field, an indentation
stress—strain relationship yields valuable information about the elastic—plastic
properties of the test material that is not generally available from uniaxial ten-
sion and compression tests.

Fig. 1.2 Contact between a non-rigid indenter and the flat surface of a specimen with
modulus E is equivalent to that, in terms of distance of mutual approach, radius of circle
of contact, and indenter load, as occurring between a rigid indenter of radius R; and a
specimen with modulus E’ in accordance with Eq. 1.2a. However, physically, the shaded
volume of material is not displaced by the indenter and so the contact could also be
viewed as occurring between a rigid indenter of radius R" and a specimen of modulus E
(Courtesy CSIRO).
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Fig. 1.3 Geometry of contact with conical indenter.

For a conical indenter, similar equations apply where the radius of circle of
contact is related to the indenter load by’:

P=%E*acota (1.2K)
The depth profile of the deformed surface within the area of contact is:

h=[£~£)ac0ta r<a (1.21)
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where o is the cone semi-angie as shown in Fig. 1.3. The quaniity a cot o is th
depth of penetration h, measured at the circle of contact. Substituting Eq. 1.2k
into 1.21 with r = 0, we obtain:

a
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where h, is the depth of penetration of the apex of the indenter beneath the origi-
nal specimen free surface.

In indentation testing, the most common types of indenters are spherical in-
denters, where the Hertz equations apply directly, or pyramidal indenters. The
most common types of pyramidal indenters are the four-sided Vickers indenter
and the three-sided Berkovich indenter. Of particular interest in indentation test-
ing is the area of the contact found from the dimensions of the contact perimeter.
For a spherical indenter, the radius of the circle of contact is given by:

a=\{2Rihp—hp2
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(1.2n)
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where h; is the depth of the circle of contact as shown in Fig. 1.1. The approxi-
mation of Eq. 1.2n is precisely that which underlies the Hertz equations (Egs.
1.2a and 1.2d) and thus these equations apply to cases where the deformation is
small, that is, when the depth h, is small in comparison to the radius R;.

For a conical indenter, the radius of the circle of contact is simply:

a=h, tana (1.20)

Table 1.1 Projected areas, intercept corrections, and geometry correction factors

the face angles with the central axis of the indenter.

Indenter Projected area Semi- Effective | Inter- Geome-
type angle cone cept try cor-
0 (deg) angle factor” | rection
v (Aaa) - fn b
WA \MVE ) G avivl p
Sphere A ~m2Rh, N/A N/A 0.75 1
Berkovich K= 3‘\/§hp2 tan2 0 65.27° 70.3° 0.75 1.034
Vickers A= 4hp2 tan2 0 68° 70.3° 0.75 1.012
Knoop A =2h.2 tan 0, tan 6, 0,= 77.64° 0.75 1.012
P 86.25°,
0,=65°
gube A= 3\/§h02 tanZ 0 35.26° 42.28° 0.75 1.034
Corner :
Cone A= ﬂhpz tanZ o a o 0727 i

In indentation testing, pyramidal indenters are generally treated as conical
indenters with a cone angle that provides the same area to depth relationship as
the actual indenter in question. This allows the use of convenient axial-
symmetric elastic equations, Eqs. 1.2k to 1.2m, to be applied to contacts involv-
ing non-axial-symmetric indenters. Despite the availability of contact solutions
for pyramidal punch problems,®>'? the conversion to an equivalent axial-
symmetric has found a wide acceptance.

The areas of contact as a function of the depth of the circle of contact for
some common indenter geometries are given in Table 1.1 along with other in-
formation to be used in the analysis methods shown in Chapter 3.

* The intercept factors given here are those most commonly used. The values for the pyramidal
indenters should theoretically be 0.72 but it has been shown that a value of 0.75 better represents
experimental data (see Chapter 3).




