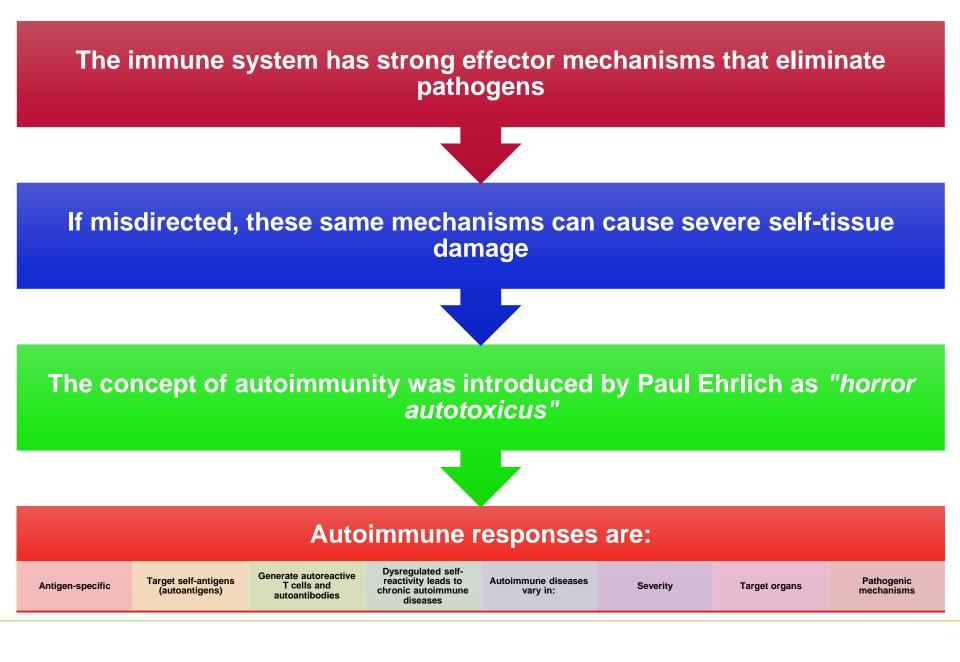



RUHR-UNIVERSITÄT BOCHUM


### AUTOIMMUNITY

Molecular Immunology I Louisa Clauß & Parisa Neisi Minaei I 25.06.2025



- I. The making & breaking of self-tolerance
- II. Autoimmune diseases & pathogenic mechanisms
- III. The genetic & environmental basis
- IV. Responses to alloantigens & transplant rejection

### I. The making & breaking of self-tolerance





# Autoimmune Disease: Scope, Challenge, and Key Examples

#### **Representative Autoimmune Diseases**

- Rheumatoid Arthritis
- *Mechanism*: Autoreactive T cells + autoantibodies against joint antigens
- *Effect*: Chronic joint inflammation, cartilage & bone destruction
- Systemic Lupus Erythematosus (SLE)
- *Mechanism*: Autoantibodies + T cells against nuclear components
- *Effect*: Systemic inflammation rash, nephritis, vasculitis
- Multiple Sclerosis (MS)
- *Mechanism*: Autoreactive T cells against CNS myelin
- *Effect*: Demyelination  $\rightarrow$  motor dysfunction, ataxia
- Type 1 Diabetes (IDDM)
- Mechanism: CD8<sup>+</sup> T cells attack pancreatic  $\beta$  cells
- Effect: Insulin deficiency  $\rightarrow$  hyperglycemia

#### **Scope & Immune Discrimination**

- Affects ~5% of individuals in Western countries
- **Incidence rising**, especially in developed regions
- Individual diseases are relatively rare
   → Reflects effective self-tolerance
   mechanisms
- Immune system must distinguish **self from nonself** a complex task:
- **B cells** recognize 3D shapes  $\rightarrow$  shared between pathogens & self
- **T cells** recognize peptides  $\rightarrow$  mimicry by pathogens
- No unique "self" tag  $\rightarrow$  recognition is  $\ensuremath{\textbf{context-dependent}}$

### **Mechanisms of Self-Tolerance (Central + Peripheral)**

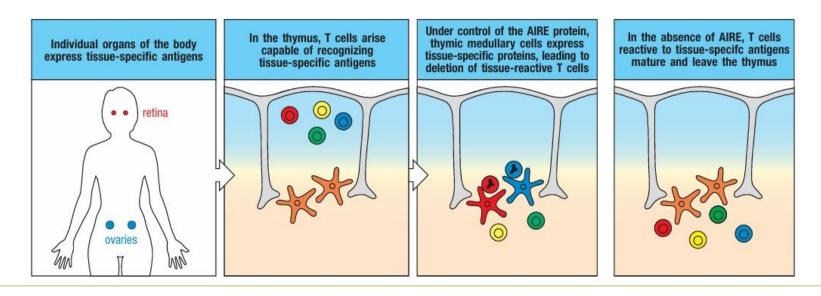
#### Central Tolerance (Thymus, Bone Marrow)

- Clonal deletion of strongly self-reactive T/B cells
- Receptor editing in B cells to reduce self-reactivity
- Antigen segregation: some self-antigens hidden in immuneprivileged sites

#### **Peripheral Tolerance**

- Anergy: weak TCR signal without costimulation → functional inactivation
- Regulatory T cells (Tregs): suppressive cytokines (e.g., IL-10, TGF-β) inhibit response
- Functional deviation: naive T cells become Tregs instead of effectors
- Activation-induced cell death (AICD): overstimulated cells undergo apoptosis

#### **Contextual Mechanisms**

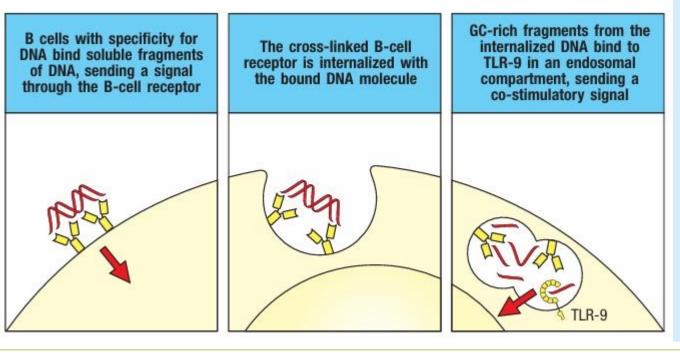

- Apoptotic cell clearance: silent removal prevents inflammation
- Absence of danger signals (no DAMPs/MAMPs): keeps APCs tolerogenic
- Tolerance to microbiota: maintained by Tregs unless epithelial damage occurs

### **Central Tolerance & AIRE**

- First checkpoint in self-tolerance
- Clonal deletion of self-reactive lymphocytes
- Site: Thymus (T cells), Bone marrow (B cells)
- Prevents early-onset, lethal autoimmunity
- Peripheral tolerance ≠ sufficient backup

- Tissue-specific antigens (e.g., insulin) expressed in thymus
- Mediated by AIRE (Autoimmune Regulator)
- Controls ectopic gene
   expression in thymic medulla
- Deletes tissue-reactive T cells

- AIRE mutation  $\rightarrow$  APS-1 / APECED
- Autoimmunity against endocrine tissues
- Fungal infections (e.g., candidiasis)
- Gradual disease onset → role for additional tolerance layers



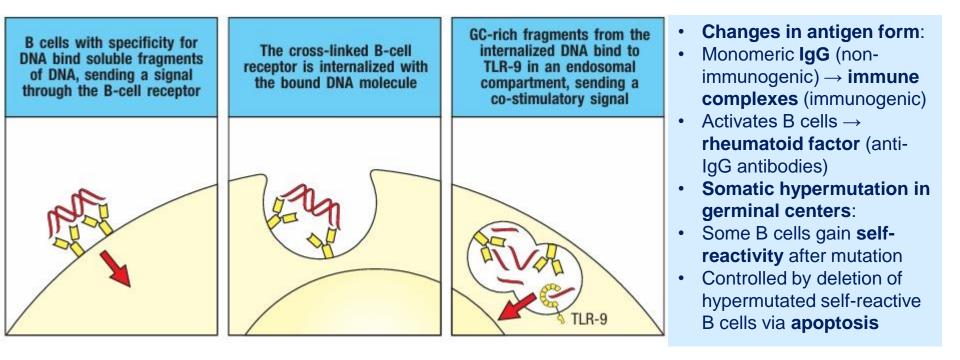



### **Activation of Ignorant Self-Reactive Lymphocytes**

#### Activation of Ignorant Self-Reactive Lymphocytes

- Ignorant lymphocytes:
- Self-reactive cells with low affinity for self-antigen
- Circulate without responding under normal conditions




#### Activation triggers:

- Infection → activated dendritic cells present selfantigen + co-stimulation
- Toll-like receptor (TLR) signaling:
- Example: TLR-9 recognizes CpG DNA (common in bacteria & apoptotic cells)
- Chromatin-reactive B cells internalize DNA → activate via TLR-9
- Result:
- Production of autoantibodies against DNA/chromatin
- Seen in Systemic Lupus Erythematosus (SLE)

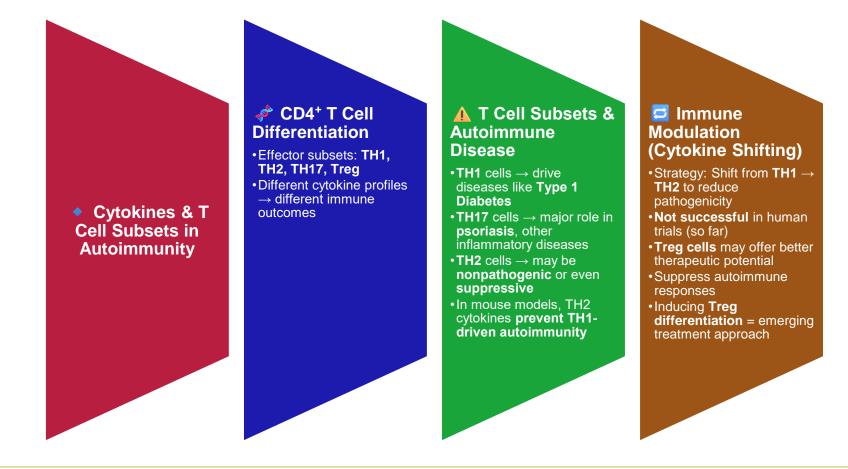


### **Activation of Ignorant Self-Reactive Lymphocytes**

- Release of hidden antigens:
- Normally sequestered antigens exposed during tissue damage
- Example: cardiac antigens released after myocardial infarction
- May cause transient or chronic autoimmunity



RUHR


UNIVERSITÄT BOCHUM RUB

### Immune Privilege & Its Breakdown in Autoimmunity

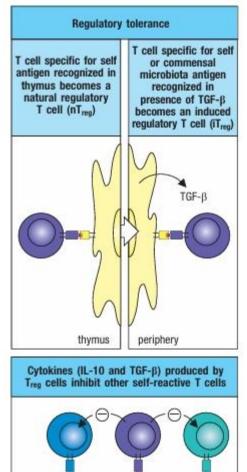
| Immunologically<br>Privileged Sites &<br>Autoimmunity                                                                          | Mechanisms of<br>Immune Privilege                                                                                                                                                                                                                                                                                                                                  | Paradox                                                                                                                                                                                                                                | Examples                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sites: Brain, eye<br>(anterior chamber),<br>testes, placenta<br>Grafts placed here often<br>do not trigger immune<br>rejection | Limited lymphatic<br>drainage $\rightarrow$ reduced<br>immune surveillance<br>Physical barriers (e.g.,<br>blood-brain barrier)<br>exclude naive<br>lymphocytes<br>Local production of TGF-<br>$\beta \rightarrow$ promotes Treg<br>differentiation over<br>effector T cells<br>Fas ligand expression<br>$\rightarrow$ induces apoptosis of<br>infiltrating T cells | Antigens leave privileged<br>sites and interact with T<br>cells → often induce<br>tolerance, not<br>inflammation<br>However, if autoreactive<br>lymphocytes are<br>activated elsewhere,<br>these antigens become<br>targets for attack | Multiple Sclerosis<br>(target: myelin basic<br>protein in CNS)<br>Sympathetic<br>ophthalmia: trauma to<br>one eye triggers<br>autoimmunity affecting<br>both eyes<br>Activated effector T cells<br>can enter these sites<br>during infection or<br>inflammation |



### T Cell Subsets & Cytokine Balance in Autoimmune Pathogenesis






### **Regulatory T Cells & Autoimmune Control**

#### Mechanisms of Treg-Mediated Tolerance

- Extrinsic regulation: Tregs suppress effector T & B cells
- Intrinsic regulation: programmed limits on lymphocyte activation/survival Types of Treg Cells
- Natural Tregs (nTregs)
- Develop in thymus
- Recognize self antigens
- Express FoxP3
- Induced Tregs (iTregs)
- Develop in periphery
- Activated in presence of TGF-β, without pro-inflammatory cytokines
- Important in oral tolerance, gut immunity

#### **Key Features**

- Suppress autoreactive cells via IL-10, TGF-β
- Can inhibit T cells with different antigen specificities (same tissue/APC)
- FoxP3 mutations → severe autoimmunity (e.g., IPEX, APS-2) Additional Regulatory Mechanisms
- FoxP3<sup>-</sup> IL-10<sup>+</sup> Tregs in intestine → suppress IBD
- Regulatory B cells → suppress arthritis, EAE
- Apoptosis pathways (Fas/Bcl-2) → eliminate autoreactive clones





periphery

### Summay

#### Balancing Self-Tolerance and Immune Competence

- Self-reactive lymphocytes exist naturally in the immune repertoire
- Autoimmunity occurs when these cells are persistently activated by autoantigens

#### Mechanisms of Tolerance

- Central tolerance (thymus, bone marrow):
- Clonal deletion of strongly self-reactive cells
- Generation of FoxP3<sup>+</sup> natural Tregs (nTregs) from self-reactive CD4 T cells
- Peripheral tolerance:
- Anergy, deletion, and iTreg induction for antigens not seen centrally
- iTregs develop in periphery under TGF-β influence

### 🞪 Balancing Immunity

- Weakly self-reactive cells are retained to preserve immune repertoire
  - $\rightarrow$  Not deleted centrally
- Controlled **only when activated** in periphery
- Suppressed by **Treg cells** (autoregulative but nonpathogenic)
- Tregs suppress nearby autoreactive cells in shared tissue environments

#### ኛ Intrinsic Control

- Immune responses are self-limiting
- Activated lymphocytes  $\rightarrow$  apoptosis-prone
- Sensitive to Fas-mediated death signals

### II. Autoimmune diseases & pathogenic mechanisms

### Autoimmune Diseases & Pathogenic Mechanisms

### **Overview**

- Autoimmune diseases = **loss of self-tolerance** → tissue damage
- Immune mechanisms resemble anti-pathogen responses

### Pathogenic Mechanisms

- Autoantibodies:
  - Activate complement
  - Engage Fc receptors → inflammation (e.g., SLE)
- Cytotoxic T cells:
  - Kill self cells like virus-infected cells
  - Example: β cell destruction in Type 1 Diabetes
- Receptor-targeting antibodies:
  - Modify receptor function without killing cells
  - Example: Myasthenia gravis
  - Chronicity of Autoimmunity
- Self antigens are not cleared like pathogens
- Immune responses become chronic and self-sustaining



### **Classification of Autoimmune Diseases**

#### **Organ-Specific Autoimmunity**

- Targets antigens restricted to one tissue
- Examples:
- Type 1 Diabetes: pancreatic β cells
- Multiple Sclerosis: CNS myelin
- Graves' Disease: TSH receptor
- Crohn's Disease: microbiota antigens in the gut

#### Systemic Autoimmunity

- Targets ubiquitous nuclear antigens (e.g., chromatin, ribonucleoproteins)
- Example: Systemic Lupus Erythematosus (SLE)
- Leads to multi-organ chronic inflammation

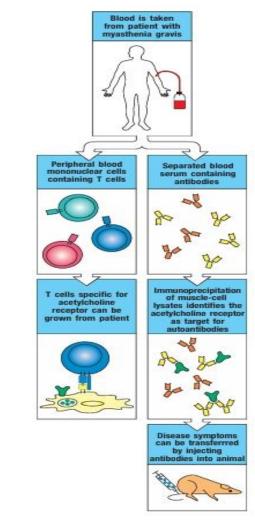
#### **Effector Mechanisms**

- T cells: initiate, sustain inflammation; kill target cells
- B cells: present antigen, produce autoantibodies, support T cells
- Autoantibodies:
- Trigger inflammation
- Disrupt receptors (agonists or antagonists)
- Cross placenta  $\rightarrow$  neonatal disease

#### **Pathogenesis Insights**

- Diseases often involve multiple overlapping mechanisms
- Immune response mimics that against pathogens: innate + adaptive arms
- IBD is a borderline case: not classic "self" target, but still immune-driven




### **Immune Effectors in Autoimmune Diseases**

#### **Effector Mechanisms**

- Autoantibodies:
- Bind to target receptors  $\rightarrow$  block function
- e.g., Myasthenia Gravis  $\rightarrow$  anti-AChR  $\rightarrow$  muscle weakness
- Form immune complexes → activate complement and Fc receptors
- · Leads to inflammation and tissue damage
- Effector T Cells:
- Recognize self peptides or microbiota-derived peptides on MHC
- Cause damage by:
- Recruiting innate myeloid cells → local inflammation
- Direct cytotoxicity to tissue cells
- Seen in: Type 1 Diabetes, Multiple Sclerosis, Psoriasis, IBD

#### **Experimental Evidence**

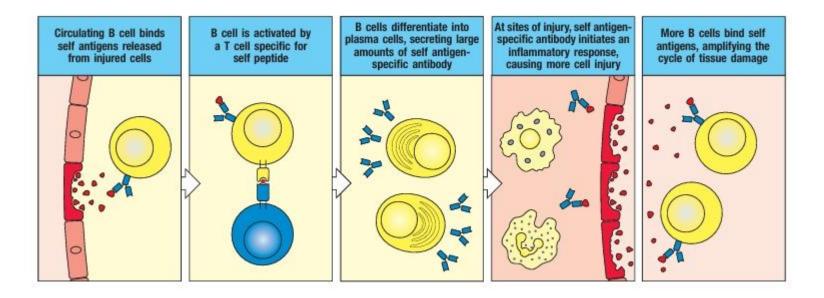
- Myasthenia Gravis:
- **Patient serum** transfers disease to animals  $\rightarrow$  confirms role of autoantibodies
- EAE (MS model):
- T cells from diseased animals transfer symptoms to healthy animals
- Confirms pathogenic role of autoreactive T cells





### **Chronic Autoimmune Disease & Positive Feedback**

#### Why Autoimmune Responses Persist


- Self-antigens not cleared → chronic stimulation
- Autoantigens released from tissue damage
   → amplify immune response
- Inflammation attracts innate cells → macrophages, neutrophils

#### **Positive Feedback Cycle**

- 1. Cell damage releases autoantigens
- B cells bind autoantigen → activate with help from T cells
- Autoantibodies produced → more damage → more antigen release
- 4. Cycle perpetuates inflammation and tissue injury

RUHR

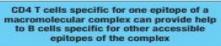
UNIVERSITÄT BOCHUM RUB

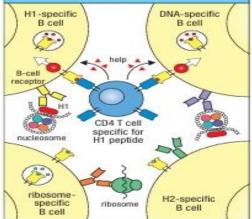


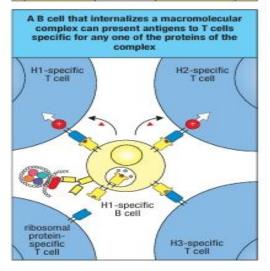


### **Epitope Spreading in Autoimmunity**

#### What is Epitope Spreading?


- Autoimmune response broadens over time:
- More epitopes on the same antigen targeted
- Or spread to entirely new autoantigens


#### How it Happens


- B cell internalizes complex antigen (e.g., nucleosome)
- Presents various peptides to CD4 T cells
- T cells help activate B cells with other specificities
- New autoantibodies generated  $\rightarrow$  more damage

#### **Clinical Examples**

- SLE: anti-DNA + anti-histone antibodies
- Pemphigus vulgaris:
- Initial: anti-Dsg-3 (mucosa only)
- Later: anti-Dsg-1 (epidermis) → skin blisters









### **Chronic Autoimmune Inflammation**

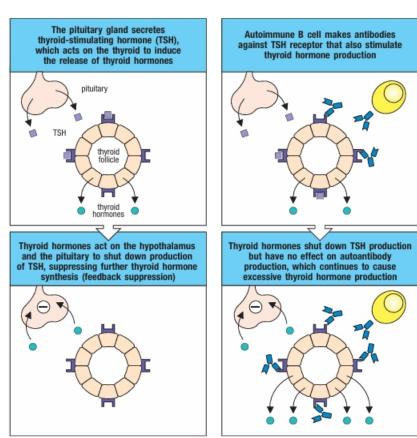
- Self-antigens persist (e.g., chromatin, insulin)  $\rightarrow$  no clearance  $\rightarrow$  ongoing immune response
- Tissue damage releases new antigens → positive feedback loop
- Epitope spreading amplifies disease (e.g., SLE, pemphigus)

#### Most Autoimmune Diseases Are Mixed

- T cells: essential for both cytotoxicity and B cell help
- **B cells**: present antigen + secrete autoantibodies
- Innate cells: amplify inflammation, tissue injury
- Modern view: autoimmunity = coordinated, multieffector immune response

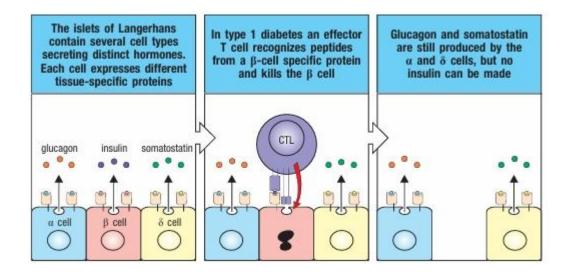
| Mechanism                                                                      | Example Disease      | Autoantigen                            | Consequence                                                   |
|--------------------------------------------------------------------------------|----------------------|----------------------------------------|---------------------------------------------------------------|
| Antibody against cell<br>surface/matrix antigens<br>(Type II Hypersensitivity) | Pemphigus vulgaris   | Epidermal cadherins (Dsg-<br>1, Dsg-3) | Blistering of skin due to<br>loss of keratinocyte<br>adhesion |
| Immune-complex<br>mediated disease (Type<br>III Hypersensitivity)              | Rheumatoid arthritis | Rheumatoid factor (IgG) complexes      | Joint inflammation and destruction                            |
| <b>T-cell-mediated disease</b><br>(Type IV Hypersensitivity)                   | Type 1 Diabetes      | Pancreatic β-cell antigens             | $\beta$ -cell destruction $\rightarrow$ insulin deficiency    |
| TH17-driven (Type 3<br>immunity)                                               | Crohn's disease      | Commensal microbiota<br>antigens       | Chronic inflammation and scarring of intestinal tissue        |




### **Inflammatory and Functional Effects of Autoantibodies**

### Sublytic Complement Activation (Inflammatory Trigger)

- Autoantibodies bind tissue cells → activate complement without full lysis
- Sublytic MAC triggers:
- Cytokine release
- Respiratory burst
- Production of pro-inflammatory lipids (prostaglandins, leukotrienes)
- C5a and leukotriene B4 recruit innate immune cells
- Fc and C3 binding activates leukocytes → amplifies tissue damage
- Seen in **Hashimoto's thyroiditis** (long-lasting antibody-driven inflammation)


#### **Autoantibodies That Alter Receptor Function**

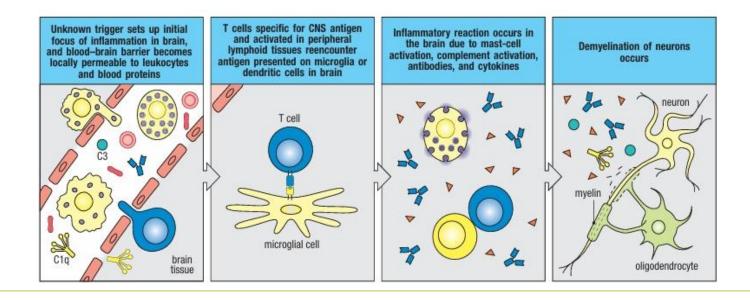
- Graves' disease:
- Autoantibodies stimulate the TSH receptor
- Override negative feedback  $\rightarrow$  hyperthyroidism
- Myasthenia gravis:
- Autoantibodies **block** acetylcholine receptors
- Receptor internalization & degradation  $\rightarrow$  muscle weakness





### T Cell–Mediated Autoimmune Diseases (Type I Diabetes)



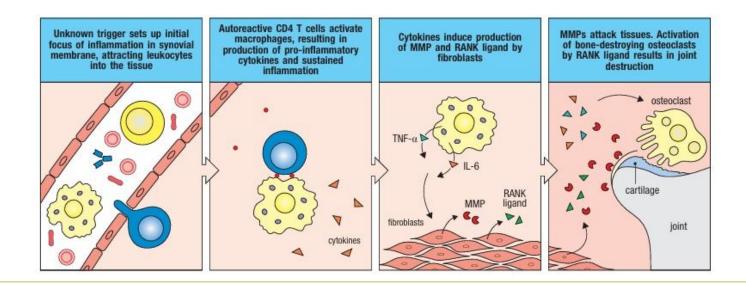

- Key T Cells: CD8<sup>+</sup> cytotoxic T cells
- **Target**: Insulin-producing β cells in pancreatic islets
- Mechanism:
- Direct killing of β cells
- No damage to  $\alpha$  or  $\delta$  cells
- Features:
- Highly selective
- Confirmed by β cell loss in identical twin pancreas transplants
- Suppressible by cyclosporin A

### **T Cell–Mediated Autoimmune Diseases (MS)**

- Key T Cells: TH1 and TH17 CD4<sup>+</sup> T cells
- Target: Myelin antigens (MBP, PLP, MOG)
- Mechanism:
- Infiltration across blood–brain barrier
- Cytokine production (IL-17, IFN-γ, GM-CSF)
- Activation of macrophages, microglia  $\rightarrow$  demyelination

- Features:
- Relapsing–remitting course → secondary progressive
- Blood–brain barrier breakdown critical in disease initiation

RUB






### T Cell–Mediated Autoimmune Diseases (Rheumatoid Arthritis)

- Key T Cells: TH17 cells (plus macrophages, fibroblasts)
- Target: Citrullinated joint proteins (ACPAs)
- Mechanism:
- Cytokine storm (IL-17, TNF-α, IL-6)
- Fibroblast activation  $\rightarrow$  MMPs  $\rightarrow$  cartilage damage
- RANKL → osteoclast differentiation → bone erosion

- Features:
- Autoantibodies aid diagnosis (ACPAs)
- Smoking + HLA-DR = key risk combo
- Both B and T cells required in early disease





### **T Cell–Mediated Autoimmune Diseases (Summary)**

| Disease                 | Key T Cells                                       | Target/Antigen                       | Mechanism & Effect                                                                                           | Notable Features                                                         |
|-------------------------|---------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Type 1<br>Diabetes      | CD8⁺ cytotoxic<br>T cells                         | β-cell proteins (e.g.,<br>insulin)   | Direct killing of pancreatic<br>β cells                                                                      | Selective islet destruction;<br>prevented by T-cell<br>immunosuppression |
| Multiple<br>Sclerosis   | TH1 & TH17<br>CD4 <sup>+</sup> T cells            | Myelin (MBP, PLP,<br>MOG)            | Demyelination via<br>cytokines +<br>microglial/macrophage<br>activation                                      | Relapsing–remitting or progressive CNS disease                           |
| Rheumatoid<br>Arthritis | TH17 CD4 <sup>+</sup> T<br>cells +<br>macrophages | Citrullinated joint proteins (ACPAs) | IL-17, TNF- $\alpha$ induce<br>inflammation; MMPs &<br>RANKL $\rightarrow$ cartilage and<br>bone destruction | Smoking + HLA-DR =<br>strong gene–environment<br>link                    |

RUHR

UNIVERSITÄT BOCHUM RUB

#### **Shared T Cell Features**

25

- T cells activate B cells → autoantibody production
- Infiltrate tissues and sustain chronic inflammation
- Drive relapse-remission cycles and progressive damage

### Summary

#### Two Major Categories of autoimmune diseases

- Organ-Specific Autoimmunity
- Targets antigens restricted to one tissue
- Examples:
- *Type 1 Diabetes*: pancreatic β cells
- Multiple Sclerosis: CNS myelin
- Graves' Disease: TSH receptor
- Crohn's Disease: microbiota antigens in the gut
- Systemic Autoimmunity
- Targets **ubiquitous nuclear antigens** (e.g., chromatin, ribonucleoproteins)
- Example: Systemic Lupus Erythematosus (SLE)
- Leads to multi-organ chronic inflammation

#### **Effector Mechanisms**

- T cells: initiate, sustain inflammation; kill target cells
- B cells: present antigen, produce autoantibodies, support T cells
- Autoantibodies:
- Trigger inflammation
- Disrupt receptors (agonists or antagonists)
- Cross placenta  $\rightarrow$  neonatal disease

#### **Pathogenesis Insights**

- Diseases often involve multiple overlapping mechanisms
   Immune response mimics that against pathogens: innate +
- adaptive arms
- IBD is a borderline case: not classic "self" target, but still immune-driven



### **III.** The genetic & environmental basis

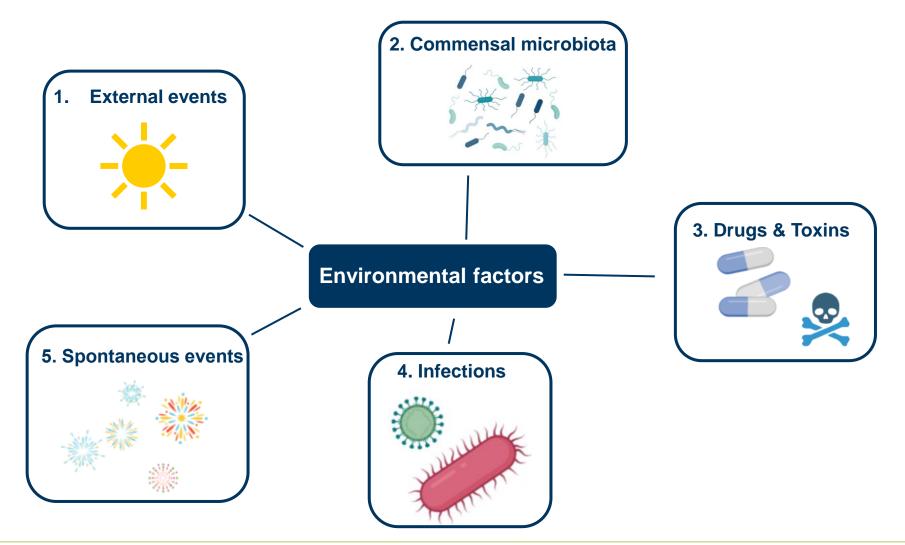
### **Genetical basis of autoimmunity**

- Autoimmune diseases are a result of genetic & environmental factors
  - > Together they overcome tolerance mechanisms
- Some individuals/families are genetically predisposed
  - > Not all develop autoimmunity at all or at the same time
    - $\rightarrow$  Influence of environmental factors, e.g. intestinal microbiota
- Many autoimmune diseases are more common in females reasons still unclear
- Most notably pathways are involved in T cell activation & function and development & function of T<sub>+</sub>17/1

RUHR

UNIVERSITÄT BOCHUM

- Majority of risk alleles (>80%) aren't contained in exons
  - > May lay in critical gene-regulatory elements
- Many genes/mutations affect one or more tolerance mechanism:
  - > Autoantigen availability & clearance
  - Apopotosis especially of self-reactive lymphocytes
  - > Expression or signalling of cytokines & co-stimulatory molecules
  - **T**<sub>reg</sub> **cell** development & function


28

### **Genetical basis of autoimmunity**

- Monogenic diseases:
  - Predisposition mostly due to combined effects of multiple genes
  - Some monogenic diseases → alleles usually recessive or X-linked
  - ➤ Monogenic diseases are rare but great of interest → identify pathways that normally prevent autoimmunity
- MHC genes have an important role
  - > **MHC genotype** most consistently associated with susceptibility particularly MHC class II alleles
  - > Differences in the ability to present autoantigenic peptides to autoreactive T cells
  - MHC alleles shape the T-cell receptor repertoire, e.g. weak binding of autoantigenic peptides leads to less effective thymic negative selection
- Genetic variants impairing to innate immune response can predispose chronic inflammation

| Gene  | Human<br>disease  | Mechanism of autoimmunity                                                                                                         |
|-------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| AIRE  | APECED<br>(APS-1) | Decreased expression of self<br>antigens in the thymus, resulting in<br>defective negative selection of self-<br>reactive T cells |
| FOXP3 | IPEX              | Decreased function of CD4 CD25 $T_{reg}$ cells                                                                                    |
| FAS   | ALPS              | Failure of apoptotic death of self-<br>reactive B & T cells                                                                       |

### **Environmental triggers of autoimmunity**





### **Environmental triggers of autoimmunity**

- 1. External factors:
  - Heterogenous geographic distribution of autoimmune diseases
    - > Numerous nongenetic factors: socioeconomic status & diet
  - Higher incidence in more developed countries reasons unknown
- 2. Diversity of the commensal microbiota:
  - Having a role in contributing to autoimmune disease including extraintestinal disease
  - Reflecting importance of interplay of the microbiome with the immune system

#### 3. Drugs & toxins:

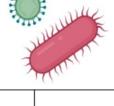
- · Drugs are the clearest evidence of external causative agents in human autoimmunity
- Toxins can cause autoimmunity
- Some drugs may react chemically with self-proteins and form derivates
  - $\succ$  Recognition as foreign  $\rightarrow$  immune response to original self-protein










### **Environmental triggers of autoimmunity**

#### 4. Infections

- Infectious agents could break self-tolerance in different ways
- Providing an environment that promote lymphocyte activation
  - Release of inflammatory mediators can affect bystander cells
  - > Tissue destruction increases availability of self-antigens
  - > Pro-inflammatory cytokines impair the suppressive activity of  $T_{reg}$  cells
  - Activation of self-reactive lymphocytes
- Expression of antigens that resemble host molecules molecular mimicry
  - Antibodies against pathogen epitope may cross-react with self-molecule
    - $\rightarrow$  Structure must be similar enough but not necessarily identical
  - Resembled peptide may activate autoreactive T cells

#### 5. Random events:

- No understandable pattern of events random events may be required
- Rare events could be more frequent in susceptible individuals or more difficult to control
- May explain why many diseases occur in early adulthood or later

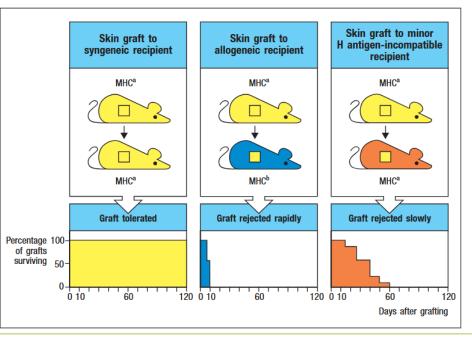


| Mechanisr | Disruption of cell<br>or tissue barrier                                        | Molecular<br>mimicry                                        |
|-----------|--------------------------------------------------------------------------------|-------------------------------------------------------------|
| Effect    | Release of<br>sequestered self<br>antigen; activation<br>of nontolerized cells | Production of<br>cross-reactive<br>antibodies<br>or T cells |
|           | Sympathetic<br>ophthalmia                                                      | Rheumatic fever<br>Reactive arthritis<br>Lyme arthritis     |
| Example   |                                                                                |                                                             |



### NUNIVERSITÄT RUE

### Summary


- Autoimmune diseases arise from a combination of genetic predisposition and environmental triggers
- Genetic risk factors include:
  - Specific MHC alleles
  - > Mutations/polymorphisms in genes affecting tolerance, signalling, cytokines
- Some autoimmune diseases are caused by **monogenic defects**  $\rightarrow$  offering insight into key mechanism
- Innate immune pathways also contribute to disease susceptibility and inflammation
- Environmental factors (e.g., infections, drugs, toxins) influence disease onset and progression
- Infections may promote autoimmunity via inflammation, molecular mimicry, and bystander activation
- Likely, no single cause is responsible rather, a multifactorial and sometimes random interplay of genetic and external influences

RUHR

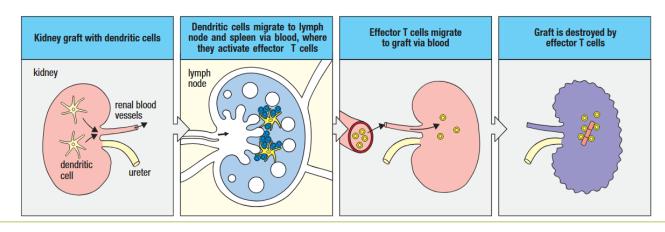
### **IV. Responses to alloantigens & transplant rejection**

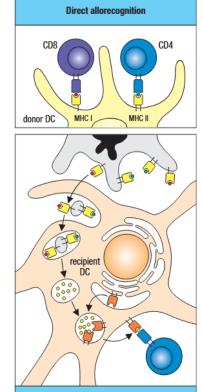
### **Basics of transplant rejection**

- Transplantation of tissues is an important medical therapy
- 100 % success between different sites on same animal (autograft) or genetically identical animals (syngeneic graft)
- Between allogeneic individuals (allograft): graft gets rejected 10-13 days after grafting  $\rightarrow$  acute rejection
- Main reason: alloreactive response of T cells directed at allogeneic MHC molecules
- Even perfect HLA locus match doesn't prevent rejection
  - MHC molecules present peptides from proteins that can be recognized as foreign
    - $\rightarrow$  minor histocompatibility antigens
- All recipients need immunosuppressive drugs chronically






### Ways of alloantigen presentation


#### Direct allorecognition:

- Organ grafts carry antigen-presenting cells = passenger leukocytes
- Migrate via blood to secondary lymphoid tissues
- Activate alloreactive effector T cells
- > T cells circulate to graft and attack directly

#### Indirect allorecognition:

- > Uptake of allogeneic proteins by recipient's antigen-presenting cells
- Presentation to T cells by self MHC molecules
- > Presentation of foreign MHC molecules or minor histocompatibility antigens

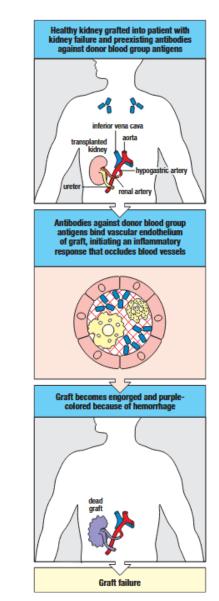




Indirect allorecognition



### **Different types of allograft rejection**


#### Hyperacute graft rejection:

- Caused by preexisting alloantibodies against blood group antigens & polymorphic
   MHC antigens
- ➢ React with antigens on the vascular endothelial cells of the graft → initiate the complement & blood clotting cascade
- Blocked or thrombosed vessels cause rapid destruction within minutes
- Can be avoided by ABO- as well as cross-matching (determination of antibodies against white blood cells of donor)

#### Chronic rejection:

- Late failure of transplanted organs
- Caused by specific immune alloreactivity, nonimmune injury, or both
- Major component for vascularized grafts: chronic allograft vasculopathy

   → concentric arteriosclerosis of graft blood vessels results in hypoperfusion of the graft
- Other causes: viral infections, recurrence of the original disease





### T<sub>reg</sub> cells & Graft-vs-Host disease (GvHD)

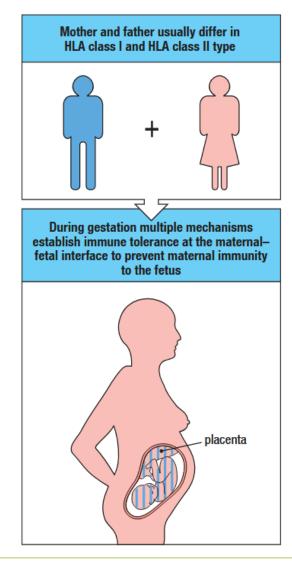
- $T_{\text{regs}}$  suppress alloreactive T cells  $\rightarrow$  help maintain transplant tolerance
- Suppress activation, cytokine release, and effector function
- **Therapeutic potential**: T<sub>reg</sub> expansion or transfer may reduce need for immunosuppressants and provide a possible therapy for GvHD
- Main challenge: maintaining T<sub>reg</sub> stability under inflammatory conditions
- GvHD: Opposite of graft rejection → Mature donor
   T cells attack recipients tissue
- Occurs mainly in hematopoietic stem cell (HSC) transplants
- Aggressive if MHC class I or II antigens mismatch –
   HLA matching more important
- T cells circulate in blood to Allogeneic hematopoietic cell Effector CD4 and CD8 T cells secondary lymphoid tissues. transplant contains mature enter host tissues and Alloreactive cells interact with and memory T cells cause injury dendritic cells and proliferate skin lymph 0 00 blood vessel

RUHR

- Can have beneficial effects: graft-versus-leukemia effect
  - > Donor T cells recognize minor histocompatibility antigens of leukemic cells  $\rightarrow$  kill them

### The fetus as a tolerated allograft

- Immunological paradox:
  - Fetus expresses paternal antigens, yet is not rejected by the maternal immune system


#### Mechanisms of tolerance:

- Placenta acts as a physical and immunological barrier.
- ➤ Trophoblast cells (fetal-derived) do not express classical MHC class I or II molecules → reducing visibility to maternal T cells
- Secretion of immunosuppressive cytokines such as IL-10 and TGF-β at the maternal-fetal interface
- Increase in maternal regulatory T cells (Tregs) during

pregnancy  $\rightarrow$  promoting systemic and local immune tolerance

#### • Significance:

This natural model of tolerance helps researchers understand mechanisms that could support transplant tolerance



RUHR

### Summary

- Graft rejection is a T cell-mediated immune response to alloantigens, especially foreign MHC molecules
- Direct and indirect antigen presentation pathways activate host T cells against the graft:
  - > **Direct**: Donor APCs present their own MHC
  - Indirect: Host APCs present processed donor antigens
- Antibodies also contribute to rejection:
  - > Can cause hyperacute rejection (via preexisting anti-donor antibodies)
  - Contribute to chronic rejection through vascular damage
- Graft-versus-host disease (GvHD) occurs when donor immune cells attack recipient tissues a risk in bone marrow transplants
- Immunosuppression and HLA matching are key to improving graft survival
- Regulatory T cells (Tregs) can suppress alloimmune responses and are potential tools for inducing
   transplant tolerance
- Maternal immune system tolerates the semi-allogeneic fetus → offering a natural model of immune regulation during allogeneic interactions

RUHR

## Thank you for your attention!

# Any Questions?