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First generation sequencing
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Sanger Sequencing
(dideoxy chain termination)

• Developed in 1977 by Fred Sanger

• DNA extended from radiolabelled primers 

using a mix of dNTP and ddNTP nucleotides

• Random chain termination upon ddNTP incorporation

• Separate reaction for each terminator (ddC-ddT-ddA-ddG)

• DNA fragments resolved on large polyacrylamide gels and detected on film by autoradiography

• Sequence read by hand and typed in

• Labour intensive, slow and expensive
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Sanger Sequencing

• Automation developed by Leroy Hood 

and Applied BioSystems

• Improved using fluorescently-labelled

ddNTP terminators (one reaction per 

sequence)

• Separated by capillary electrophoresis in automated sequencing machine

• Long reads (up to 1100 bp) and low error rate

• Limited throughput, expensive per base but still in wide use.
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Second generation sequencing
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Second Generation Sequencing –
High Throughput Sequencing (HTS)

• General characteristics:

− DNA molecules from a single library are clustered on a planar substrate (bridge PCR), 

or to the surface of micron-scale beads  (emulsion PCR).

− Sequencing by synthesis or by ligation.

• Advantages over first generation sequencing:

− In vitro clonal amplification circumvents time consuming steps such as ligation of 

DNA fragments into a plasmid, transformation of E. coli  and colony picking.

− Array-based sequencing enables higher degree of parallelism than  conventional 

capillary-based sequencing.



7

Principal characteristics of the four 
most used deep sequencing platforms
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Principal characteristics of the four 
most used deep sequencing platforms

Method Read length
Accuracy (single 

read not 
consensus)

Reads per run Time per run
Cost per 1 million 

bases (in US$)
Advantages Disadvantages

Single-molecule 
real-time 
sequencing (Pacific 
Biosciences)

10,000 bp
to 15,000 bp

87% single-read 
accuracy

500–1000 
megabases

30 minutes to 4 
hours

$0.13–$0.60
Longest read length. 
Fast. Detects 4mC, 
5mC, 6mA.

Moderate 
throughput. 
Equipment can be 
very expensive.

Ion semiconductor 
(Ion Torrent 
sequencing)

up to 400 bp 98% up to 80 million 2 hours $1
Less expensive 
equipment. Fast.

Homopolymer 
errors.

Pyrosequencing 
(454)

700 bp 99.9% 1 million 24 hours $10 Long read size. Fast.
Runs are expensive. 
Homopolymer 
errors.

Sequencing by 
synthesis (Illumina)

MiSeq: 50-600 bp
HiSeq: 50-500 bp

99.9% (Phred30)
MiSeq: 1-25 Million; 
HiSeq: 300 million - 
2 billion, 

1 to 11 days, 
depending upon 
sequencer and 
specified read length

$0.05 to $0.15

Potential for high 
sequence yield, 
depending upon 
sequencer model 
and desired 
application.

Equipment can be 
very expensive. 
Requires high 
concentrations of 
DNA.

Sequencing by 
ligation (SOLiD
sequencing)

50+35 or 50+50 bp 99.9% 1.2 to 1.4 billion 1 to 2 weeks $0.13 Low cost per base.

Slower than other 
methods. Has issues 
sequencing 
palindromic 
sequences.

Chain termination 
(Sanger sequencing)

400 to 900 bp 99.9% N/A
20 minutes to 3 
hours

$2400
Long individual 
reads. Useful for 
many applications.

More expensive and 
impractical for 
larger sequencing 
projects. This 
method also 
requires the time 
consuming step of 
plasmid cloning or 
PCR.
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How does high-throughput 
sequencing work?
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Pyrosequencing

• Developed in Uppsala, Sweden. Later acquired by Qiagen, then licensed to Life Sciences (454)

− DNA fragmentation

− Adapters ligated to DNA fragments (biotin tag)

− Bound to Streptavidin beads (each fragment, one bead)

− Amplified by emulsion PCR

− Beads deposited into separate wells on PicoTitrePlate with separate  pyrosequencing 

reaction in each well, in a large-scale parallel  pyrosequencing system.
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Pyrosequencing

− Sequencing by synthesis method

− G-C-T-A nucleotides are added sequentially, dNTP incorporation releases pyrophosphate (PPi)

− ATP sulfurylase converts dNTP to ATP, acts as a substrate for the luciferase

− Generates light in amounts that are proportional to the amount of PPi (homopolymer error!)

− Unincorporated nucleotides and ATP are degraded by the apyrase

− Light signal recorded on camera

Discontinued in 2014!!!
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Ion Torrent

• Licensed from DNA Electronics Ltd, developed by Ion Torrent 

Systems. Later bought over by  Life Technologies

− Adapters ligated to DNA fragments

− Bound to beads, amplified by emulsion PCR

− Beads deposited into separate wells on semiconductor 

chip with A-T-C-G  nucleotides are added sequentially

− Sequencing by synthesis

− Nucleotide incorporation releases a proton and the pH 

of the well changes. A sensing layer detects the change 

and translates the chemical signal to a digital signal. 

(Avoids using optical  sensors or fluorescent nucleotides; 

still with homopolymer errors)
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Illumina

• Developed by Balasubramanian and Klenerman

who founded Solexa, later acquired by  Illumina

− Adapters ligated to DNA fragments

− Flow cell – glass slide with oligos matching 

adapters

− Captured DNA replicated through bridge 

amplification to make  identical ‘colonies’

− Fluorescent reversible terminators passed 

over flow cell

− Image captured, terminator and dye 

removed  (better performance with 

homopolymers)

− barcoding and UMI for multiplexing
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Illumina

• Low error rate, read lengths have 

increased to ≥300 bp.

• Currently used for vast majority of 

sequencing

• Range of machines with different 

throughput and cost

• Run time is slower than Ion Torrent (days 

compared to hours)

• Low error rate – 0.1%

• Single or paired end reads
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Illumina
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MGI
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Illumina
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Illumina
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Illumina
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Illumina
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Illumina
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Instruments generate short reads that 
must be mapped to the reference 
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Typical screenshot representing 
aligned HTS reads
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Human genome project

• 1984: Plan – Sanger sequencing

• 1990: Start at National Institutes of Health (NIH)

• 1998: Craig Venter and Celera Genomics

shotgun sequencing

• 2001: Draft(s) published together with 

Francis Collins of NIH

• 2004: Final published

• Size: ~3 billion base pairs

• Cost: ~$3 billion
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• XPRIZES: intended to encourage technological  development that could benefit 

mankind

• 1996: Ansari XPRIZE for suborbital spaceflight.  Claimed by SpaceShipOne in 2004 

($10 million)

• 2006: Archon Genomics XPRIZE: $10 million will be awarded to the first team to 

rapidly, accurately and economically sequence 100 whole human genomes to an 

unprecedented level of accuracy

• 2007: Google Lunar XPRIZE: $20 million to land a  rover on the moon, move more than 

500 m, and  transmit HD images and video back to earth

• 2011: Tricorder XPRIZE: $10 million for a mobile  device that can diagnose patients as 

accurately as a  panel of board-certified physicians

Human genome XPRIZE
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Sequencing costs
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1000 genomes project

• 2008: Launched

• Establish a detailed catalogue of human  genetic 

variation correlated with ethnicities

• Sequence 1000 anonymous participants  from 

various ethnic groups within 3 years

• 2012: 1092 genomes announced

• Each person carries 250-300 loss- of- function 

variants in annotated genes

• 50-100 variants previously implicated in  

inherited disorders

• Mutation rate of 10-8 per bp per  generation 

(based on mother-father- child trios)

• 1000 nematode genomes, 1000 plant  genomes, 

Genome 10K project, etc.
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Applications

RNA Sequencing

• mRNA Sequencing
• Targeted RNA Sequencing
• Ribosome Profiling
• RNA Exome Capture Sequencing
• Total RNA Sequencing
• Small RNA Sequencing
• Ultra-Low-Input and Single-Cell RNA-Seq

DNA Sequencing

• Whole-Genome Sequencing
• Targeted Sequencing
• ChIP-Seq
• ATAC-Seq

Methylation Sequencing
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Metagenomics

• Metagenomics can be defined as the  

sequenced-based analysis of the 

whole collection of genomes 

isolated directly  from a sample

• The advantage is that isolation is not  

needed – only extraction and  

sequencing (although there’s more to 

it  than that!)

• Bacteria and archaea: 16S rRNA gene,  relatively short, often conserved within  species, and 

generally different among  species

• Viruses: often present with a large  excess of host DNA, making their  efficient and reliable 

detection  problematic
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Metagenomics methods

extraction

Sequencing  
quality control

De novo
assembly BLAST

Species
A

Species
B

Species  
C
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E

Species  
F

Species  
G
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Metagenomics – detection

• Saunders et al. (2012): Geospatial resolution of  human and 

bacterial diversity with city-scale metagenomics

Analysis of samples 
collected at Penn 
Station on one day, 
compared at each 
hour
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Metagenomics – detection

• Saunders et al. (2012): Geospatial resolution of  human and 

bacterial diversity with city-scale metagenomics

Geospatial analysis of 
the most prevalent 
genus, Pseudomonas, 
across the subway 
system
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Metagenomics – detection

• Saunders et al. (2012): Geospatial resolution of  human and 

bacterial diversity with city-scale metagenomics
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Metagenomics – virus discovery

• Lauber & Seitz et al. (2017): Deciphering the Origin and Evolution of Hepatitis B Viruses 

by Means of a Family of Non-enveloped Fish Viruses
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Epidemics – Ebola

• The 2013-2015 West Africa  Ebola epidemic,  

26648 cases, 11017 deaths

• HTS used throughout the  epidemic to sequence 

Ebola  virus genomes from patient  samples

• Used to monitor viral  evolution: how fast is it  

mutating, where is it  mutating, which selection 

pressures are operating
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Epidemics – who infected whom?
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Epidemics – who infected whom?

• Identify source of infection

• Identify long transmission events

• Identify super-spreaders – individual  or hub level

• Identify new incursions or spillovers
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Viral populations

• Viruses mutate rapidly

• A single virus can enter a cell, and output  

tens of thousands of virions within hours

• Every time the genome is copied,  

mutations are introduced

• Enables viruses to adapt to change 

rapidly

• New environments

• New hosts

• Drug and vaccine treatment

• Viruses exist as a large and constantly 

and  rapidly evolving swarm – the 

quasispecies
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Bottlenecks and Founder Effect
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Viral HTS
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Viral mutation tracking

• Ability to detect mutations at low levels in a sample

• Can then examine samples for the presence of important mutations: e.g.  drug 

resistance

➢ Hepatitis E virus 

• clinical application in HIV diagnostics!
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Third generation sequencing
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Third generation sequencing

• Advantages over second generation 

sequencing:

− Very long reads (Oxford nanopore)

− Real time output

− scRNAseq (10x Genomics)
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Oxford nanopore sequencing (ONT)

2016 - Kate Rubens becomes the first person to ever sequence in space

investigated the effects of microgravity on RNA isolation and PCR analysis

+ she is a virologist!!!
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Oxford nanopore sequencing (ONT)
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Oxford nanopore sequencing (ONT)

Professor David Deamer’s initial sketch for sequencing DNA using a nanopore
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Oxford Nanopore

• 'Strand sequencing' is a technique that 

passes intact  DNA polymers through a 

protein nanopore,  sequencing in real time 

as the DNA translocates the  pore

• Simple sample preparation

• Nucleotide base detected as passes 

through pore (median kmers 5nt)

• Very long reads, up to 15,000 bp

• Small and portable devices useable in field 

studies  (MinION), benchtop system for 

high throughput  (PromethION) and for 

use with mobile devices  (SmidgION)

• High error rate



48

Oxford Nanopore
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Oxford Nanopore

https://nextstrain.org
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Oxford Nanopore

https://nextstrain.org
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Single Cell sequencing
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Single Cell sequencing
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A single cell and single nucleus 
atlas of COVID-19 lung

https://doi.org/10.1101/2021.02.25.430130
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A single cell and single nucleus 
atlas of COVID-19 lung

https://doi.org/10.1101/2021.02.25.430130
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The Mouse Cell Atlas
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Spatial Transcriptomics
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Spatial Transcriptomics
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Spatial Transcriptomics

analysis of Human Lymph Nodes
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Spatial Transcriptomics

analysis of Human Lymph Nodes
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Spatial Transcriptomics
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Spatial Transcriptomics



62

Thank you for 
your attention !!
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