RUHR-UNIVERSITÄT BOCHUM

Assembly, Egress and Maturation of Viruses

Department for Molecular and Medical Virology Prof. Eike Steinmann Medical Faculty Ruhr-University Bochum https://www.ruhr-uni-bochum.de/virologie

Olson A J et al. PNAS 2007;104:20731-20736 For movie: http://www.pnas.org/content/suppl/2007/12/05/0709489104.DC1

Requirements for directed trafficking of viral proteins and nucleic acids

Table	12.1	Intracellular	trafficking	requirements	for	virus	assembly	Y
-------	------	---------------	-------------	--------------	-----	-------	----------	---

Assembly site(s)	Viruses
Within the nucleus	Adenovirus, polyomavirus
Within the cytoplasm	Picornavirus
At the plasma membrane	Alphavirus, retrovirus, rhabdovirus
At an internal cellular membrane	Bunyavirus, coronavirus, poxvirus
Within the nucleus and at a cellular membrane	Herpesvirus, orthomyxovirus

Directional movement

Short range: Crossing a membrane, release from a capsid: Channels

Long range: Movement only cytoskeletal tracks: Myosin motor/actin Dynein/kinesin motor/microtubules

Localization of viral proteins to the plasma membrane

Assembly at the plasma membrane: transport of viral glycoproteins

ER import

Glycosylation, folding, disulfide bonds, oligomerization

Transport into Golgi apparatus

Trimming of glycans

Cleavage

Transport to the plasma membrane

Maturation of influenza virus HA protein along the secretory pathway

Avian viruses: HA cleavage determines pathogenicity

Targeting of a nascent protein to the ER membrane

Detection and structure of N-linked oligosaccharides

Tunica- Endo H mycin *N*-Glycanase - detection of N-linked oligosaccharides by use of tunicamycin or glycosidases

- mannose-rich oligosaccharide added via N-glycosidic bond to asparagine residue shown

-Sugar precursor is transferred to N-linked glycosylation sites as protein translocates into the ER

-Three glucose residues and one mannose trimmed and additional sugars are added when protein travels through golgi

Protein transport from the ER to the Golgi

Lipid-Plus-Protein-Signals (SP-independent)

Myristoylation: Addition of 14-carbon, saturated fatty acid myristate to N-terminal glycine

Essential for membrane association of HIV Gag and viral budding

Myristoylation of VP4 is essential for poliovirus assembly

Protein-Signals (SP-independent)

Matrix proteins of - strand RNA viruses: Essential for genome packaging
No lipid modification, membrane association intrinsic property of the protein
Membrane binding maybe enhanced by interaction with viral membrane proteins

A Influenza virus M1			
Hydrophobic	101	Zn finger motif	
1 regions	RKLKR	148 162	~252
) C
Lipid binding	NLS	Binding to RNA	
Binding to RNP			Í
		Inhibition of replication	

Site of budding depends on localization of envelope proteins

Hypothetical pathway of virion assembly and release

Yellow: common to all viruses Blue: common to many viruses

- Structural studies of virus particles
- Visualization by microscopy (EM, IFM, GFP etc.)

- Biochemical and genetic analysis of assembly intermediates
- Recombinant DNA technology (for example *in vitro* translation)

Challenges:

- Coordination of subunit expression, assembly into structural units and transport to the site of capsid assembly
- 2. Coordination of capsid assembly and nucleic acid incorporation
- 3. Capsids: High stability versus efficient disassembly
- Transport of capsids to membranes harboring envelope proteins
- 5. Release from the infected cell (budding, lysis) or direct transfer to new host cells

Assembly of subunits and intermediates

Assembly of protein shells

Packaging of the viral genome

Maturation

Assembly from individual proteins

Subunits interlock, all information contained within primary structure, no chaperons and no conformational changes necessary

Individual subunits must encounter each other: high expression level required

Assembly from polyprotein: picornaviruses

-Four proteins form heteromeric structural unit

- -PI immature structural unit: VP0, VP3 and VP1
- -Protease allows formation of 5S structural subunit
- -VP4 remains covalently linked to VP2 in VP0 until assembly is completed

Retroviral Gag proteins:

Polyproteins, cleaved by viral protease in budding virions: Maturation.

Maturation is blocked by protease inhibitors

Cellular chaperons required for folding of viral structural proteins:

<u>Hsp70 proteins:</u> HIV Gag, Adeno protein IV, HBV L protein <u>Hsp68 proteins:</u> HIV Gag <u>Chaperonin TriC:</u> Mason-Pfizer monkey virus Gag

Viral chaperons

<u>Adeno 2, L4 100kDa protein:</u> Hexon protein <u>HSV 1, VP22a:</u> VP5

SDS-PAGE

Late domains interact with vacuolar protein sorting (VPS) proteins.

PTAP: Tsg101 LYPLTSLRSL/LYPDLSEI: Alix (apoptosis linked gene 2 interacting protein) PPPY: Nedd4 ubiquitin ligases

Virus maturation

Poliovirus assembly

- formation of immature structure
 5S subunit (VP0, VP3, VP1)
- 75S empty capsids storage forms of 14S pentamers
- Formation of capsid shell from 14S pentamers is coordinated with genome encapsidation and requires replication (150S non-infectious)
- VP0 cleavage to VP4 and VP2 infectious virion released

Adenovirus

- synthesis and assembly of hexons and pentons, transport into nucleus
- L4 protein required for formation of hexons
- (A) structural units and proteins assemble into emtpy capsids
- IVa2 binds to packaging signal of genome: assembly intermediate
- Mature particles are produced upon cleavage of the precursor proteins
- Nucleus Cytoplasm LI 52/55-kDa protein Empty capsid Assembly intermediate L4 100-kDa protein IVa₂ L4 33-kDa proteir Protein II Hexon trimer pIIIa proteins New viral DNA рТр Survey ρVI ρVII Young PVIII virion в рμ L3 protease Protein IIIa III Protein IV Тр Penton VI VII VIII Virion μ
- (B) is based on the failure of any capsid-like structures to assemble (mutations)
- then capsid assembly and encapsidation of the genome are concerted reactions

Influenzavirus

- (-) strand genomic RNA synthesized in the nucleus

- packaging by the NP RNA-binding proteins

- binding to M1 protein prevents further transcrption or replication and allows binding of of NEP

- Export of nucleocapsid to the cytoplasma
- M1 also binds to PM which carries HA, NA and M2 proteins
- M1 controls budding

- gag polyprotein of all retroviruses contains MA, CA and NC proteins
- association of gag molecules at PM with one another and with the RNA genome initiated budding
- incorporation of further gag molecules , release of of immature non-infectious particle
- cleavage of gag and gag-pol by PR produced infectious particles

HCV Morphogenesis

Overview of the Hepatitis C Virus (HCV) life cycle as example

You tube: http://hcvlifecycle.univ-lyon1.fr

- Assembly: multiple reactions coordinated, irreversible

- Assembly: attractive as antiviral target
- Diversity in size, composition and structural sophistication

- All viruses must complete a common set of de novo assembly reactions to ensure reproductive success

- Viral structures suited for protection of the nucleic acid genome; built in a way that allows their ready dissassembly during entry

- Very stable association among virion components during assembly and transmission, but reversal of these interactions when appropriate signals are encountered upon infection of a new host cell

