

Immunology Presentation: Complement system

18.06.2025 Cataldo Vincenzo Linardi & Linda Hammerschmidt

Immunology Presentation: Complement system - SS 2025

Overview

RUB

- Complement system
- Initiation phase
 - 1) Classical
 - 2) Lectin
 - 3) Alternative
- Formation of C3/C5 convertase
- Terminal cascade
- Membrane attacking complex
- Complement components C3a and C5a
- Regulated activation of complement system

- Part of the innate immune system
 - Activates when pathogen breaches host's epithelial barriers and initial antimicrobial
- Complement = collection of soluble proteins
 - present in blood and other body fluids
 - Proteins interact with each other
 - ➢ form different pathways

Complement system - overview

- Complement Goal:
- activation of 3 distinct effector pathways
 - 1) Inflammation
 - 2) Phagocytosis
 - 3) Membrane attack
 - helps eliminate pathogens

Initiation phase

- Initiation phase of the complement system
 - ➤ 3 ways of activation
 - 1. Classical Pathway
 - 2. Lectin Pathway
 - 3. Alternative Pathway

Initiation phase - Classical

- 1) Classical Pathway:
- triggered by binding of C1 complex to antibodies (IgG or IgM)
 - Antibodies bound to antigens on surface of pathogen
 - C1 complex consisting of C1q, C1r and C1s
- C1q recognizes the immune complexes
 - activates C1r and C1s
 - leads to cleavage of C4 and C2
 - C4b and C2a form C3 convertase C4b2a

Initiation phase - Lectin

- Start: mannose-binding lectin (MBL) or ficolins
 - recognizes sugar structures on pathogen surface
- Lectins connected to MASP (MBL-associated serine proteases)
 - After recognition of pathogen
 - MASPs activates C4 and C2
 - formation of C3 convertase C4b2a

Initiation phase - Alternative

- 3) Alternative Pathway:
- Trigger: spontaneous hydrolysis of C3 in plasma
 - = "tickover"
 - Result: C3(H₂O) can bind factor B
 - cleaved to Bb by factor D
 - ➤ C3(H₂O)Bb formed
 - soluble C3 convertase

Initiation phase

- 3) Alternative Pathway:
- C3b bound to pathogen surfaces
 - binds factor B
 - cleavage by D
 - formation of C3 convertase C3bBb

Formation of C3 convertase

- All pathways lead to formation of C3 convertase
 - Classical & lectin pathway: C4b2a
 - Alternative pathway: C3bBb
- Goal: cleave C3 into C3a (Inflammation) and C3b (Opsonin)

C3 convertase			
Lectin pathway	C4b2a		
Classical pathway	C4b2a		
Alternative pathway	C3bBb		
Fluid phase	C3(H ₂ 0)Bb		

Formation of C5 convertase

- C3b is covalently bound to the pathogen surface
 - enhances opsonization
- C3b itself can also bind to C3 convertases
 - generates C5 convertase
 - ➢ C4b2a3b or C3b₂Bb
 - cleaves C5 to C5a and C5b

C5 convertase			
Lectin pathway	C4b2a3b		
Classical pathway	C4b2a3b		
Alternative pathway	C3b ₂ Bb		

RUB

Terminal cascade

- Terminal cascade: final phase in the activation cascade of the complement system
- Builds a pore-forming structure called
 <u>membrane-attack complex (MAC)</u>

The terminal complement components that form the membrane-attack complex			
Native protein	Active component	Function	
05	C5a	Small peptide mediator of inflammation (high activity)	
6	C5b	Initiates assembly of the membrane-attack system	
C6	C6	Binds C5b; forms acceptor for C7	
C7	C7	Binds C5b6; amphiphilic complex inserts into lipid bilayer	
C8	C8	Binds C5b67; initiates C9 polymerization	
C9	C9"	Polymerizes to C5b678 to form a membrane-spanning channel, lysing the cell	

Membrane-attack complex

- Leads to:
 - Ioss of cellular homeostasis
 - disruption of the proton gradient across the membrane
 - penetration of enzymes such as lysozymes
 - destruction of pathogens
- Impact of MAC may look dramatic but:
 - Real effects are less central
 - People with C5-C9 deficiencies are only more prone to Neisseria species

Complement components C3a and C5a **RUB**

- Induce local inflammatory response
- Effects on cells and tissues:
 - induce the contraction of smooth muscle
 - increase vascular permeability
 - \succ activation of mast cells \rightarrow release of:
 - Histamine (promotes inflammation)
 - > TNF- α (a cytokine that attracts immune cells)
- High concentration of C3a and C5a
 - circulatory collapse
- Named <u>anaphylatoxins</u>

Regulated activation of complement system - 1 **RUB**

- Activation of complement system is locally limited
 - Iargely confined to the surface on which it is initiated
 - Prevents attachment to healthy host cells
- Common for lectin and classical pathway regulation:
 - C3 activation on surface of pathogen, not on host-cell surfaces or in plasma
 - Acquired through C4 catalysation by ficolin or MLB complex
 - C4b cleavage product binds adjacent proteins or carbohydrates on pathogen surface
 - If C4b does not rapidly form bonds:
 - C4b irreversibly inactivated

Regulated activation of complement system - 2

- Alternative pathway Regulation:
 - Properdin acts as a positive regulator by stabilizing C3bBb on pathogen or damaged cell surfaces
 - Negative regulatory proteins protect healthy host cells by:
 - preventing formation of the C3 convertase
 - promoting rapid dissociation of existing convertases
 - Decay-accelerating factor (DAF/CD55)
 - Factor I
 - Factor H

Regulatory proteins of the classical and alternative pathways				
Soluble factors regulating complement				
Name	Ligand/ binding factor	Action	Pathology if defective	
C1 inhibitor (C1INH)	C1r, C1s (C1q); MASP-2 (MBL)	Displaces C1r/s and MASP-2, inhibiting activation of C1q and MBL	Hereditary angiodema	
C4-binding protein (C4BP)	C4b	Displaces C2a; cofactor for C4b cleavage by factor I		
CPN1 (Carboxypeptidase N)	C3a, C5a	Inactivates C3a and C5a		
Factor H	C3b	Displaces Bb, cofactor for factor I	Age-related macular degeneration, atypical hemolytic uremic syndrome	
Factor I	C3b, C4b	Serine protease, cleaves C3b and C4b	Low C3 levels, hemolytic uremic syndrome	
Protein S	C5b67 complex	Inhibits MAC formation		
Membrane-bound factors regulating complement				
Name	Ligand/ binding factor	Action	Pathology if defective	
CRIg	C3b, iC3b, C3c	Inhibits activation of alternative pathway	Increased susceptibility to blood-borne infections	
Complement receptor 1 (CR1, CD35)	C3b, C4b	Cofactor for factor I; displaces Bb from C3b, and C2a from C4b		
Decay-accelerating factor (DAF, CD55)	C3 convertase	Displaces Bb and C2a from C3b and C4b, respectively	Paroxysmal nocturnal hemoglobinuria	
Membrane-cofactor protein (MCP, CD46)	C3b, C4b	Cofactor for factor I	Atypical hemolytic anemia	
Protectin (CD59)	C8	Inhibits MAC formation	Paroxysmal nocturnal bemoglobinuria	

Regulated activation of complement system - 3 **RUB**

- Classical pathway Regulation:
 - C2 cleavage by C1s requires binding to C4b, ensuring activation occurs only on the pathogen surface
 - active C2a serine protease confined to pathogen surface, remains associated with C4b
 -> forming the C3 convertase C4b2a
 - C3b inactivated by hydrolysis unless a rapid covalent bond is formed with thioester

Regulatory proteins of the classical and alternative pathways					
Soluble factors regulating complement					
Name	Ligand/ binding factor	Action	Pathology if defective		
C1 inhibitor (C1INH)	C1r, C1s (C1q); MASP-2 (MBL)	Displaces C1r/s and MASP-2, inhibiting activation of C1q and MBL	Hereditary angiodema		
C4-binding protein (C4BP)	C4b	Displaces C2a; cofactor for C4b cleavage by factor I			
CPN1 (Carboxypeptidase N)	C3a, C5a	Inactivates C3a and C5a			
Factor H	C3b	Displaces Bb, cofactor for factor I	Age-related macular degeneration, atypical hemolytic uremic syndrome		
Factor I	C3b, C4b	Serine protease, cleaves C3b and C4b	Low C3 levels, hemolytic uremic syndrome		
Protein S	C5b67 complex	Inhibits MAC formation			
Membrane-bound factors regulating complement					
Name	Ligand/ binding factor	Action	Pathology if defective		
CRIg	C3b, iC3b, C3c	Inhibits activation of alternative pathway	Increased susceptibility to blood-borne infections		
Complement receptor 1 (CR1, CD35)	C3b, C4b	Cofactor for factor I; displaces Bb from C3b, and C2a from C4b			
Decay-accelerating factor (DAF, CD55)	C3 convertase	Displaces Bb and C2a from C3b and C4b, respectively	Paroxysmal nocturnal hemoglobinuria		
Membrane-cofactor protein (MCP, CD46)	C3b, C4b	Cofactor for factor I	Atypical hemolytic anemia		
Protectin (CD59)	C8	Inhibits MAC formation	Paroxysmal nocturnal hemoglobinuria		

Regulated activation of complement system - 4

- Complement activation initiated by antibodies bound to pathogens is specific to the classical pathway
- Antibody that is chemically cross-linked to complement is likely the most efficient trigger for phagocytosis

1. Janeway's IMMUNOBIOLOGY 9th Edition by Kenneth Murphy & Casey Weaver

End

https://makeameme.org/meme/thank-you-for-bae79450cb