

Antiviral therapy and vaccination

Yannick Brüggemann

Department of Molecular & Medical Virology

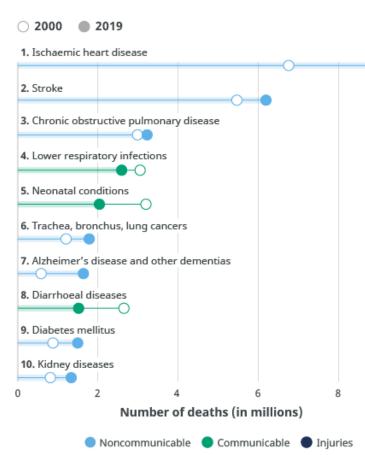
Contents

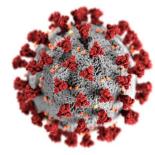
Vaccines

- Active and passive vaccines
- Different types of active vaccines
- Vaccine developement

Antivirals

- Mechanisms of Action
- Drug Resistance
- Antiviral developement




Global burden of infections

10

RUB

Leading causes of death globally

Infections	Mortality (year)
~5 Mio	~650.000
39 Mio	~630.000
1.7 Billion	1.6 Mio
296 Mio	820.000
58 Mio	290.000
	~5 Mio 39 Mio 1.7 Billion 296 Mio

World Health Organization (WHO)

Source: WHO Global Health Estimates.

Antiviral strategies

Hygiene etc.

Vaccines

Antiviral drugs

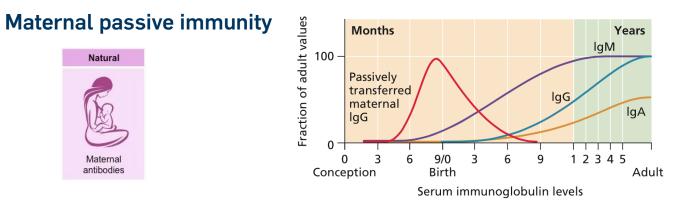
RUB

Active - modified form of the pathogen or material derived from it that induces immunity to disease

- Long term protection after latency (duration variable)

Passive - products of the immune response (antibodies or immune cells) into the recipient

- Short term protection (several weeks to 2-3 months)



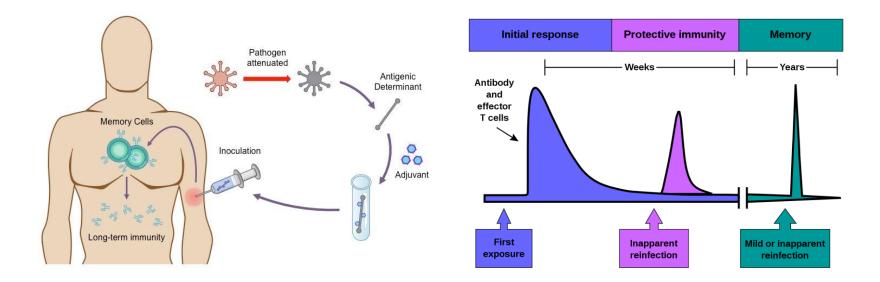
Passive vaccination

Emergency/preventive measure: (Rabies, tetanus, RSV, Hepatitis A/B)

<u>RSV:</u> Prophylaxis with palivizumab in high-risk groups

Rabies:

- Virus infects central nervous system
- Transmission by infected animals (saliva)
- Almost always fatal
- Post-exposure vaccination within 24 hours


COVID19: prophylaxis patients at risk for severe covid 19 symptoms.

Active vaccination

Pathogen derrived antigens to mobilize host immune system to protect against viral infection or disease (protective immunity).

Establishment of an immune memory (long lived B/T memory cells)

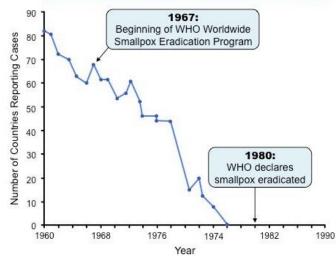
Layers of protection

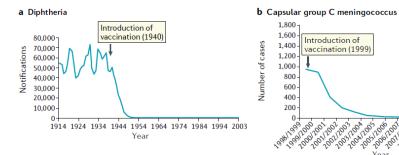
<u>Individual protection:</u> Individuals can no longer become (severely) ill Prevention only possible by individual protection (e.g. FSME; tetanus)

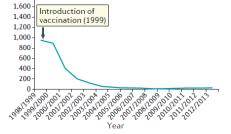
Smallpox

Edward Jenner 1796

- Variola virus (DNA virus)
- Mortality rate: >30%, >80% in infants
- 300 million deaths during 20th century (eradicated 1980)
- Monkeypox Vaccine




Vaccination campaigns



STOR STOR

c Polio

e Measles

S 700,000

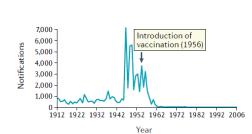
ÿ 500,000

2 400,000

900,000

800,000

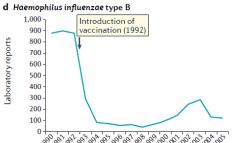
600,000


300,000

200,000

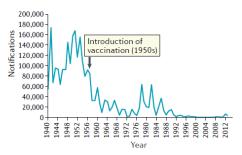
100,000

0


950

Introduction of

vaccination (1968)


Year

Year

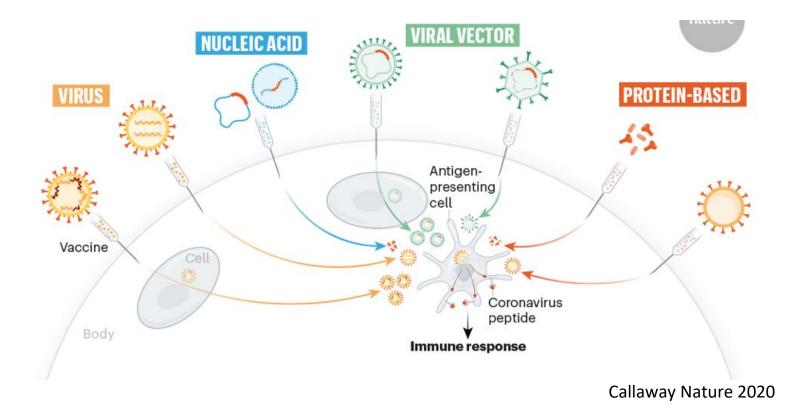
f Pertussis

1,800

Immunization schedule (STIKO)

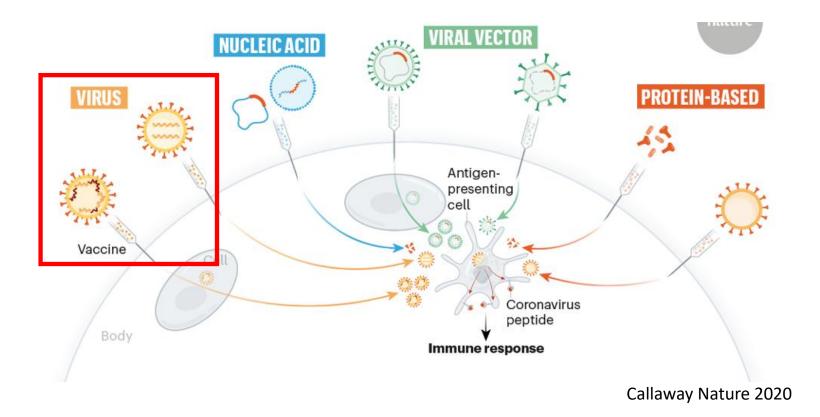
mpfehlungen de	ler Sta	indigen imptko	mmissio	on (STIKC	0), Stanc	Septer	nber 2023					Wissen, v		
		Säuglinge (2 - 23 Mon	und Kleinkir ate)	nder					(2-17 J	und Jugendliche		1	(ab 18 Jahre)	
npfungen ^{staviren}	>	6 Wochen U4 2 G1 ^a	U4 3 G2	4 (G3)	us 5-10	U6 11*	U6 12	13-14 15 U7	16-23 U7a/U8 2-4 U9	5-6 U10 7-8 U11/J	9-14 15-16	12) 17	ab 18 ab 60	
tanus	>	G1 ^b		G2		G3°	N				A2		A alle 10 Jahre	
htherie	>						N			A1 N	A2		A alle 10 Jahre	
ichhusten (Pertussis)	>	lunjdu		iunjdu	N	iunydu	N			A1 N C	A2	N	A3° N	
) (Haemophilus influenzae T	Typ b) >	ach-Ir	~	ach-In		ach-In	N		>					Vaccines without "universal" indication:
derlähmung (Poliomeyel	elitis) >	6-6		6-f		6-f	N				А	N		Hepatitis A
atitis B	>						N							Japanese Encephalitis
umokokken	>	G1 ^b		G2	N	G3°	N						S9	
ningokokken C	>					_	G1	N						Rabies
sern	>					G1	N) G2	N				S	Smallpox
mps eln	>					3-fach Impfun MMR		Mindpod	N					Yellow Fever
ndpocken (Varizellen)	,					G1		→ G2	N					
(Varizeren)								7 22		G14	+G24 N			
rteirose (Herpes Zoster)										01-			G1 ^h +G2 ^h	
ppe (influenza)	>						Per	onen ab 6 Monate mit	chronischen Erkranku	ngen (jährlich) und Sch	wangere		Sjahrlich	
OVID-19	>						Pers	nen ab 6 Monate mit e	hronischen Erkrankun	gen und Schwangere			A1 ¹ A jahrlich	
J Impftermin bei Früh U Impftermin bei Früh N Nachholimpfung (b A Auffrischimpfung G Grundimmunisierun S Standardimpfung	herkennur bei unvolls	ngsuntersuchung Kinde ständigem Impfschutz)	er	3 Schluckimp b Frühgeboren (insgesamt 4 c Mindestabsti d 2 Impfungen im Alter von 9 a 15 Jahre or beiden Impfu e einmalige Au	ofungen (G2/G3) n e erhalten eine zu Impfungen) and zur vorangegi (im Abstand von 9 bis 14 Jahren; b der bei einem Abs ingen ist eine dritt	nit einem Minde sätzliche Impfur mindestens 5 M zi Nachholen dö tand von wenig e Impfung erfor chst mit der näc	onaten) für Mädchen Impfung beginnend r als 5 Monaten zwist	in Impfachutz, ohn en g Impfung mit oog h zweimslige Impf maximal 6 Mone d Jungen i Impfabstinde en Alter sowie G2 und A' en den j Wiederholte Auf Antgeniontakt, Erkankungen wi	tsprechend Fachinformation beachtr	der Kindheit mpfstoff (PCV20) d von mindestens 2 und an (zwischen G1 und G2 an 12 Monaten zum letzten 6 Monaten mit chronischen mpfung empfohlen.		Aktuelle Info Corona-Schu	rmationen zur itzimpfung if unserer Seite	

Source: STIKO, Robert Koch Institut (<u>www.rki.de</u>)

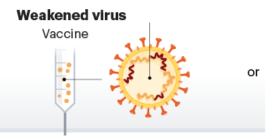

• Memory depends on vaccine recipient (age etc.), antigen, booster etc.

 \rightarrow Vaccine-dependent administration schedules

Types of vaccines



Types of vaccines



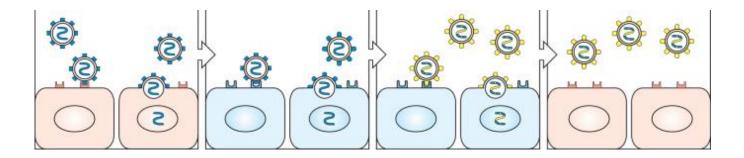
Virus vaccines

RUB

VIRUS VACCINES

Attenuated virus

- Attenuated viable pathogens
- "Physiological" stimulation of the immune system (long lasting protection)
- Limited use in certain patient groups (immunosuppressed patients)



Live vaccines

Mumps, measles, rubella and chickenpox:

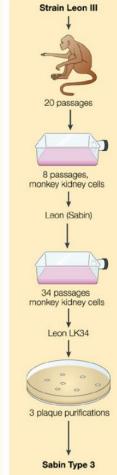
- 3(4)-dose combination vaccine (MMR(V)).
- Attenuated viruses from human cells or embryonic chicken cells
- Contraindications: Immunodeficiency/pregnancy/chicken protein allergy.

Rotavirus

- Attenuated virus from Vero cells
- STIKO recommendation for infants
- Oral vaccination

human rotavirus


Vero cells



Poliovirus

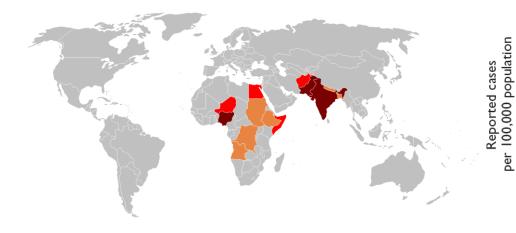
Virus	Mutation
	5'-UTR nt 480
	VP1 aa 1106
P1/Sabin	VP1 aa 1134
	VP3 aa 3225
	VP4 aa 4065
P2/Sabin	5'-UTR nt 481
PZ/ Jaulii	VP1 aa 1143
DQ (Cabin	5'-UTR nt 472
P3/Sabin	VP3 aa 3091

Oral poliovirus vaccine

Vaccine-induced polio if vaccine strains revert (1 in 2.7 million)

Poliovirus

40


30

20

10

0 1940

Oral polio vaccines (Sabin)

- Attenuated poliovirus types 1, (2) and 3
- Better immune response
- Lower cost, easier to use

Inactivated poliovirus vaccine (Salk)

Polio

Oral

vaccine

1970

1980

1990

Inactivated

1960

vaccine

• Injection, routinely used

1950

- Inactivation with formaldehyde
- Not STIKO recommended

Virus vaccines

VIRUS VACCINES

Attenuated virus

- Attenuated viable pathogens
- "Physiological" stimulation of the immune system (long lasting protection)
- Limited use in certain patient groups (immunosuppressed patients)

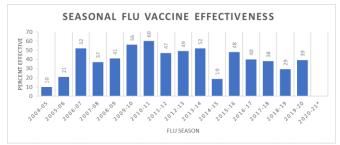
Inactivated virus

Inactivated virus

- Chemical inactivation → No danger of infection
- Basic immunization with 2-3 injections
- Boosters
- Often with adjuvants

NA (neuraminidase)

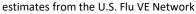
Influenza



Recommended composition of influenza virus vaccines for use in the 2019-2020 northern hemisphere influenza season

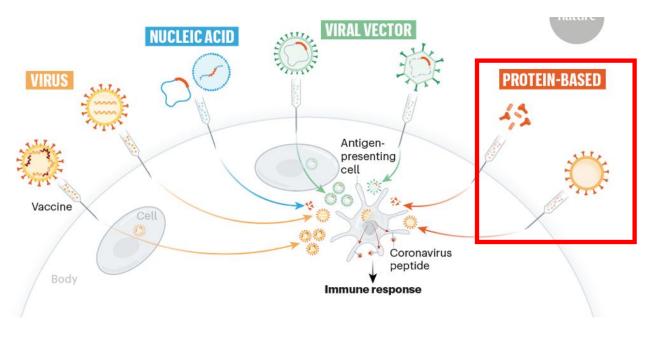
21 February 2019 (updated on 21 March 2019)

It is recommended that egg based quadrivalent vaccines for use in the 2019-2020 northern hemisphere influenza season contain the following:


- an A/Brisbane/02/2018 (H1N1)pdm09-like virus;
- an A/Kansas/14/2017 (H3N2)-like virus; *
- a B/Colorado/06/2017-like virus (B/Victoria/2/87 lineage); and
- a B/Phuket/3073/2013-like virus (B/Yamagata/16/88 lineage).

HA (haemagglutinin)

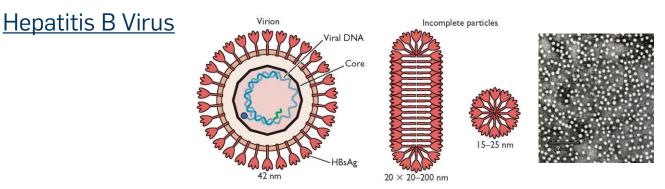
Antigen drift


• Envelope proteins continuously change (Antigen Drift)

 \rightarrow Annual adaptation to circulating virus types (variable protection)

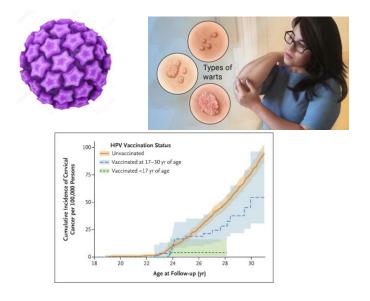
Vaccine types

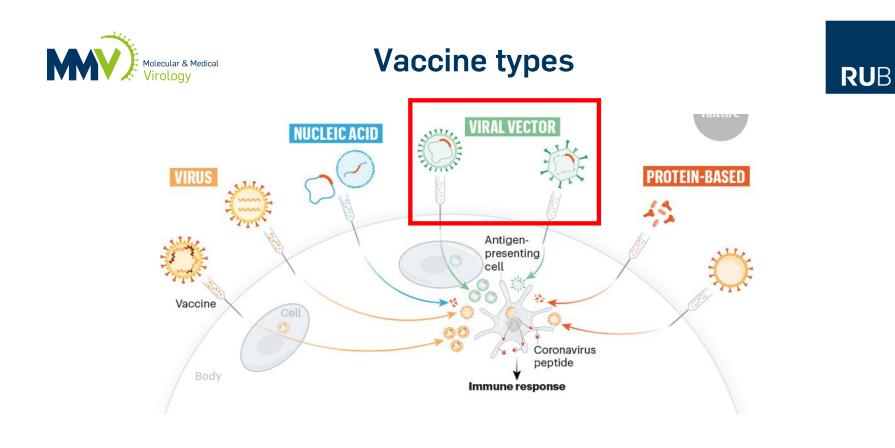
Callaway Nature 2020


Subunit vaccines

- Recombinant or purified protein vaccines (No virus cultivation)
- No live components \rightarrow no risk of the vaccine triggering disease

Virus-like-particles

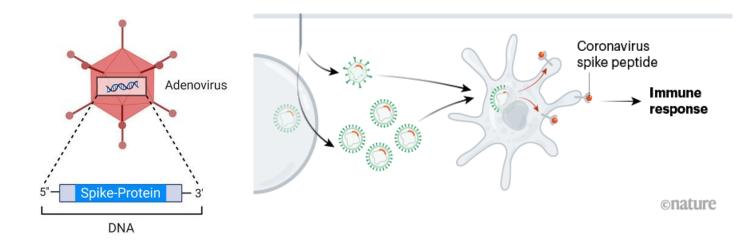




HBsAg produced in yeast \rightarrow Assembly into empty particles (VLP)

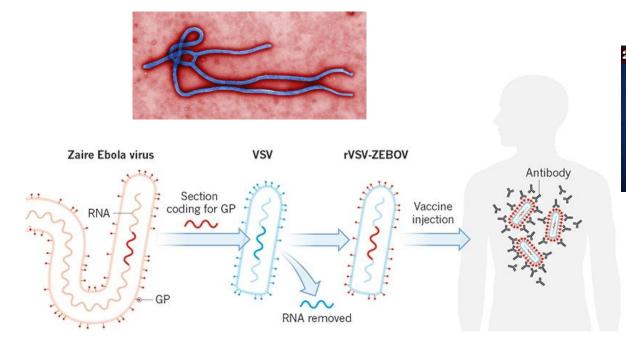
Human papillomaviruses (HPV)

- Capsid of four papillomavirus types
 → empty HPV viral envelopes
- Cancer prevention (cervical cancer)


Vector vaccines:

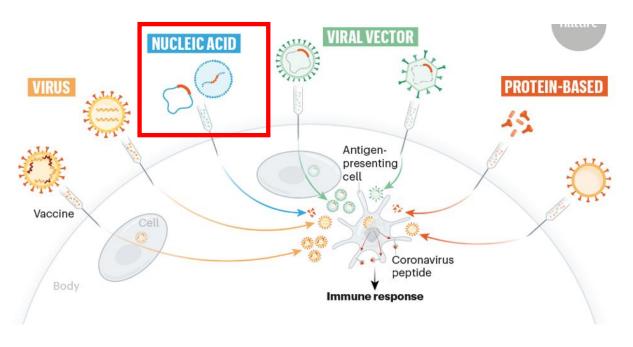
- Recombinant carrier virus encoding for antigen(s) of the target pathogen
- Replicating and non-replicating

SARS-CoV2 vector vaccines



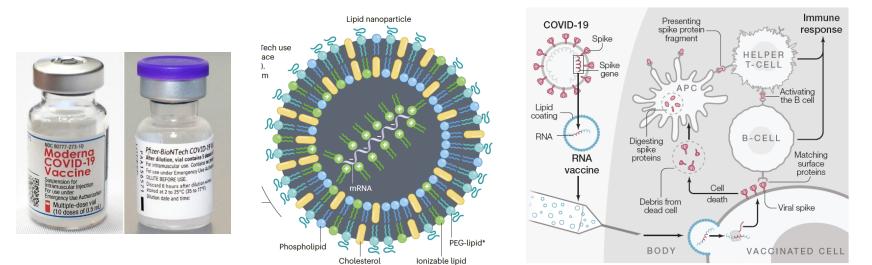
- Ad26.COV2.S (Johnson&Johnson)
- Vaxzevria (Astra Zeneca)
- Sputnik V (Russia)
- Adenoviruses with SARS-CoV2 spike (not replication-competent)
- Strong immune response (cellular + humoral).

Ebola vector vaccine


rVSV-ZEBOV

- Pseudotyped VSV (common laboratory virus)
- Recombinant, replication-competent vaccine
- Approved in 2019 (highly effective (70-100%))

Vaccine types


Callaway Nature 2020

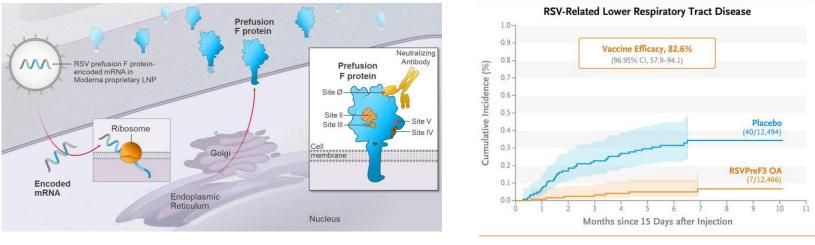
Gene-based vaccines:

• Genetic information for target antigens of the pathogens (DNA/mRNA)

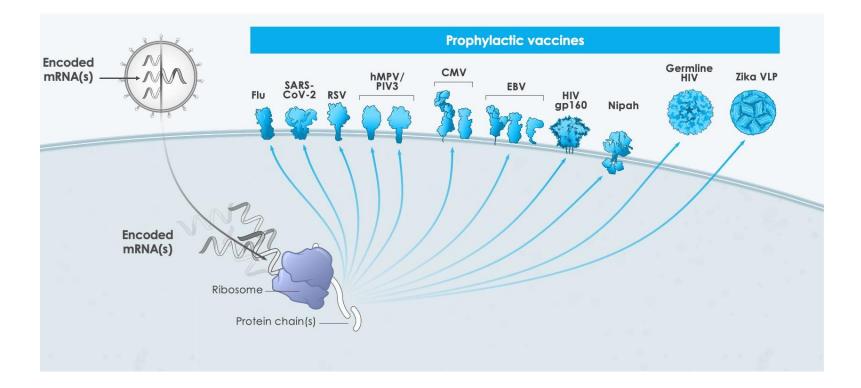
*Lipid attached to polyethylene glycol

BNT162b2 (Biontech) and mRNA-1273 (Moderna)

• modRNA-based SARS-CoV-2 vaccine (Spike Glycoproteins).


RUB

mRNA Vaccines - RSV


Papi et al. 2023

- Respiratory syncytial virus (RSV)
- FDA approved mRNA vaccine based on prefusion form of F (Key antigen) on May 03, 2023 for people +60
- First attempts since 1966 (formalin-inactivated vaccine)

mRNA Vaccines

Types of vaccines

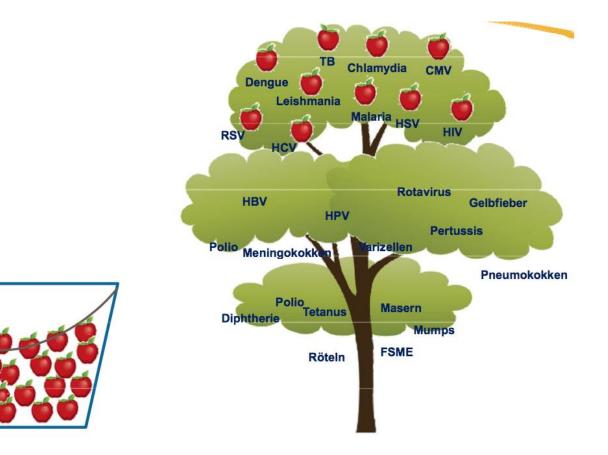
Α	Licensed for use							
Vaccine type	PAMP	Examples (route if not IM/ID)	Adjuvant	Booster				
Live attenuated	Endogenous	Measles	None	Yes				
~1532 m		Mumps	None	Yes				
	~~~~	Rubella	None	Yes				
فقي مسم الله	2000	Rotavirus (oral)	None	Yes				
	2	Yellow Fever	None	No				
- 40 B 30 a.		Chicken pox	None	Yes				
		Polio Sabin (oral)	None	Yes				
		Live zoster	None	No				
		BCG	None	No				
		Influenza	None	Annual				
		(nasal: FluMist)						
Killed	Intrinsic	Whole cell pertussis	None	Yes				
AND DO		Polio Salk	None	Yes				
	Sur							
Split	Intrinsic	Seasonal influenza	None	Annual				
	s m	Fluad for > 65 yr.	MF59	Annual				

Α	A Licensed for use						
Vaccine type	PAMP	Examples (route if not IM/ID)	Adjuvant	Booster			
Virus like particles	Incorporated*	HPV Guardasil 9 HPV Cervarix	Alum AS04	Yes Yes			
Toxold	None	Diphtheria Tetanus	Alum Alum	Yes Yes			
Recombinant subunit	None	Hep A Havrix Hep A Vaqta Hep B Engerix-B Hep B Recombivax HepA/Hep B Twinrix Hep B Heplisav-B Acellular pertussis Zoster Shingrix Influenza Flublock	Alum Alum Alum Alum Alum CpG Alum AS01B None	Yes Yes Yes Yes Yes Yes Annual			
Conjugate	None	MenB Bexsero MenB Trumenba Pneumococcal Prevnar 13 HiB	Alum Alum Alum Alum	Yes Yes Yes Yes			
Polysaccharide	None	Pneumococcal polysaccharide PPSV23	None	Yes			







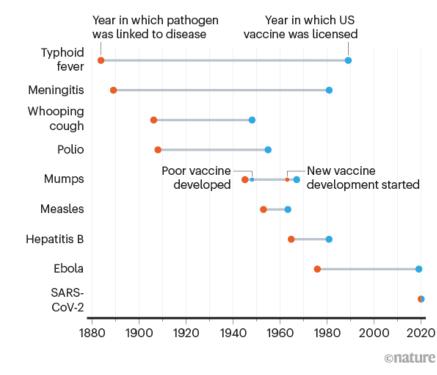



https://individuelleimpfentscheidung.de/standp unkte/podcasts.html



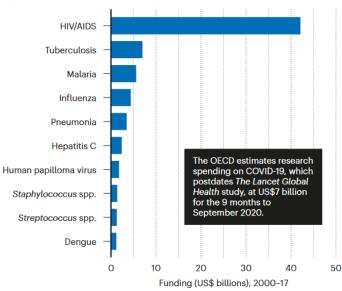
### Vaccine developement






• Vaccines for approximately 30 pathogens available




#### Vaccine developement



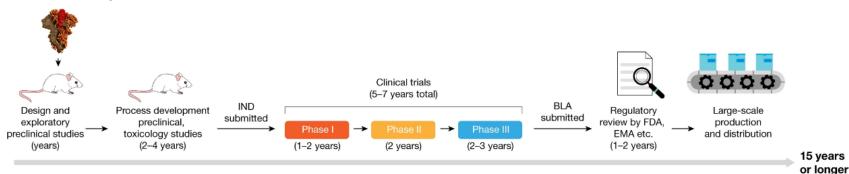


#### WHICH DISEASES GET THE MOST RESEARCH FUNDING?

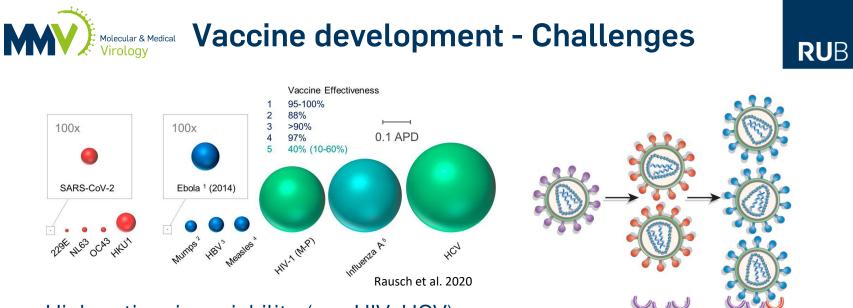
In 2000–17, HIV/AIDS received six times more funding than tuberculosis, according to a 2020 study in *The Lancet Global Health*. The study examined grants made for infectious-disease research from public and philanthropic funders in G20 countries.



Top 10 infectious diseases tracked by funding




### Vaccine developement




<u>Requirements of an effective vaccine:</u>

- Vaccinated individual must be protected against disease caused by a virulent form of the specific pathogen
  - Just getting 'a response' is not enough (e.g. producing antibodies)
  - Safety: no disease, minimal side effects
  - Protection must be long-lasting
  - Genetic stability
  - Ideally: Low cost, easy to store/deliver (oral vs. needle)



#### Traditional development



High antigenic variability (e.g. HIV, HCV)

#### **HIV Vaccine trials**

Vaccine	Trial	1998 – 2001	2002 - 2005	2006 - 2009	2010 – 2013	2014 – 2017	2018 – 2021
Bivalent gp120	VAX 004: AIDSVAX B/B in alum, US, discordant couples, age 18–60						
	VAX 003: AIDSVAX B/E in alum, Thailand, IVDU, age 20–60						
	HVTN 504 (STEP): US, MSM, age 18-45						
Ad5, internal proteins	HVTN 503 (Phambili): RSA, heterosexual, age 18–35			STO			
Canarypox/ bivalent gp120	RV144: ALVAC vCP1521-AIDSVAX B/E, Thailand, community-based, age 18–30				31.2%	6 protect	ion
DNA/Ad5, internal proteins + Env	HVTN 505: US, MSM, TGSM, age 18–50					STOP	
Canarypox/ bivalent gp120	HVTN 702 (P5): ALVAC vCP2438 – bivalent clade C gp120, RSA, heterosexual, age 18–35						
Ad26 (mosaic)/ trimeric gp140	HVTN 705/HPX2008, 4 mosaic sequences – clade C gp140, Sub-Saharan African women, age 18–35						

Robinson 2018

#### LATEST NEWS

#### Janssen and Global Partners to Discontinue Phase 3 Mosaico HIV Vaccine Clinical Trial

Independent, scheduled review of Phase 3 Mosaico study finds investigational vaccine regimen lacks efficacy in preventing HIV



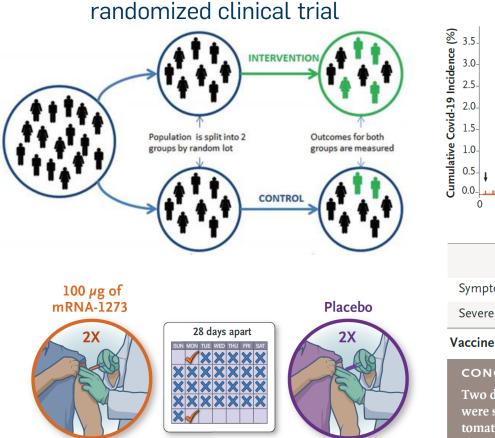
### Virology Vaccine development - Challenges

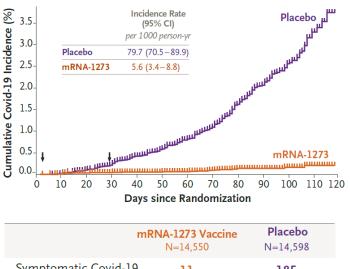
2. Quantitative correlates and surrogates of protection after vaccination



#### Correlates of protection

Vaccine	Test	Level required			
Anthrax	Toxin neutralization	1,000 IU/ml			
Diphtheria	Toxin neutralization	0.01-0.1 IU/ml			
Hepatitis A	ELISA	10 mIU/ml			
Hepatitis B	ELISA	10 mIU/ml			
Hib polysaccharides	ELISA	1 μg/ml			
Hib conjugate	ELISA	0.15 µg/ml			
Human papillomavirus	ELISA	ND ^b			
Influenza	HAI	1/40 dilution			
Japanese encephalitis	Neutralization	1/10 dilution			
Lyme disease	ELISA	1,100 EIA U/ml			
Measles	Microneutralization	120 mIU/ml			
Meningococcal	Bactericidal	1/4 (human complement)			
Mumps	Neutralization?	ND			
Pertussis	ELISA (toxin)	5 units			
Pneumococcus	ELISA; opsonophagocytosis	0.20-0.35 µg/ml (for children); 1/8 dilution			
Polio	Neutralization	1/4–1/8 dilution			
Rabies	Neutralization	0.5 IU/ml			
Rotavirus	Serum IgA	ND			
Rubella	Immunoprecipitation	10–15 mIU/ml			
Tetanus	Toxin neutralization	0.1 IU/ml			
Smallpox	Neutralization	1/20			
Tick-borne encephalitis	ELISA	125 IU/ml			
Tuberculosis	Interferon	ND			
Varicella	FAMA gp ELISA	$\geq 1/64$ dilution; $\geq 5$ IU/ml			
Yellow fever	Neutralization	1/5			
Zoster	CD4 ⁺ cell; lymphoproliferation	ND			


^{*a*} Also see the text. ^{*b*} ND not defined


- Immune response must be of adequate strength and quality for efficient protection
- Measurable signs that a person (or other potential host) is immune (i.e. antibodies)
- Without knowing the correlates of immunity, one cannot know exactly what sort of immune response a vaccine would need to stimulate ( $\rightarrow$  only P3 studies possible)



## mRNA-1273 (Moderna)



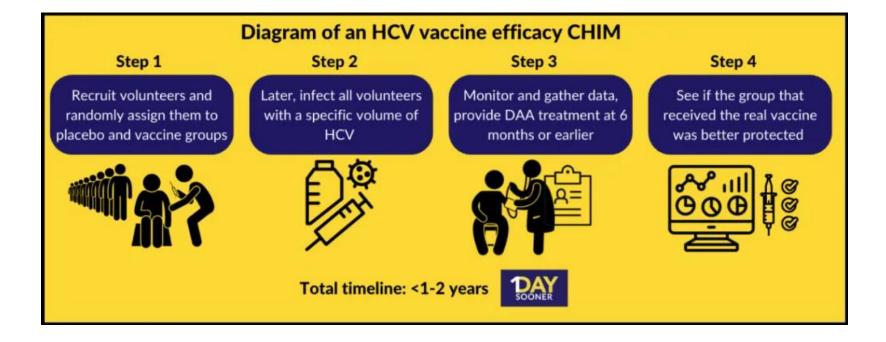




	0	30	
Severe Covid-19	•	20	
Symptomatic Covid-19	11	185	

#### Vaccine efficacy of 94.1% (95% CI, 89.3-96.8%; P<0.001)

#### CONCLUSIONS


Two doses of a SARS-CoV-2 mRNA-based vaccine were safe and provided 94% efficacy against symptomatic Covid-19 in persons 18 or older.

Vaccine efficacy is generally reported as a relative risk reduction (RRR)



## **Challenge Study For Hepatitis C?**







## **Antiviral strategies**

## Hygiene etc.



## Vaccines

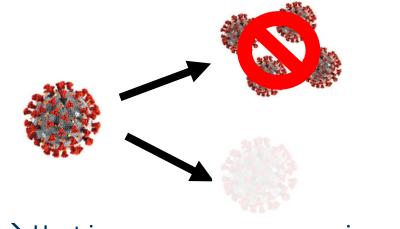


## Antiviral drugs

RUB





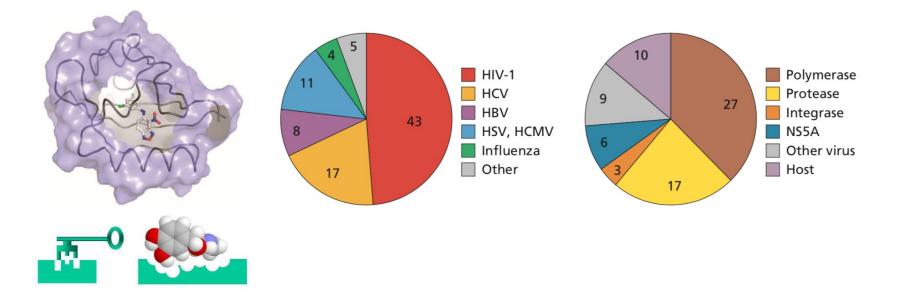

## **Antiviral drugs**



Vaccines can prevent viral diseases. **BUT:** only modest or no therapeutic effect if a person is already infected.

Antivirals are drugs to treat people who have already been infected by a virus.

**HOWEVER**, antiviral substances only inhibit the reproduction of a virus.  $\rightarrow$  virostatic, not virucidal (killing).

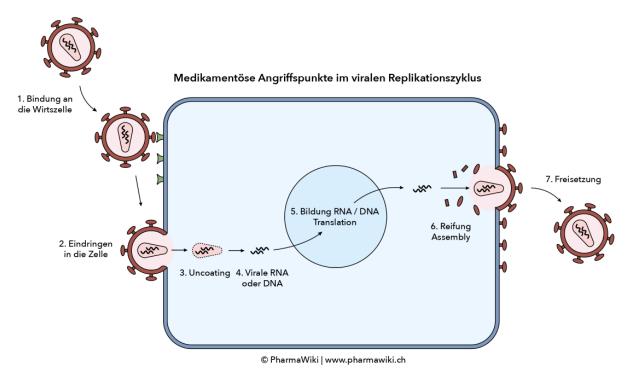



 $\rightarrow$  Host immune response remains essential.



## **Antiviral drugs**

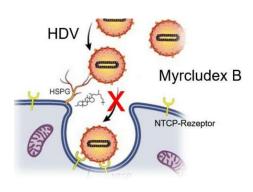




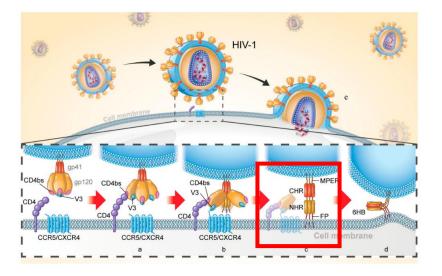

- Small molecule inhibitors for viral / host proteins to perturb essential steps of the viral live cycle
- Frequent targets are viral polymerases and proteases
- Unlike bacteria, there are **no broad-spectrum antivirals**



## **Targets for antiviral drugs**







- 1. Docking, entry into the host cell
- 2. Viral enzymes (e.g. reverse transcriptase, DNA/RNA polymerases, integrase)
- 3. Maturation/assembly
- 4. Release of viral particles
- 5. (inhibition of cellular proteins)

# **Fusion/Attachment Inhibitors**





Molecular & Medical

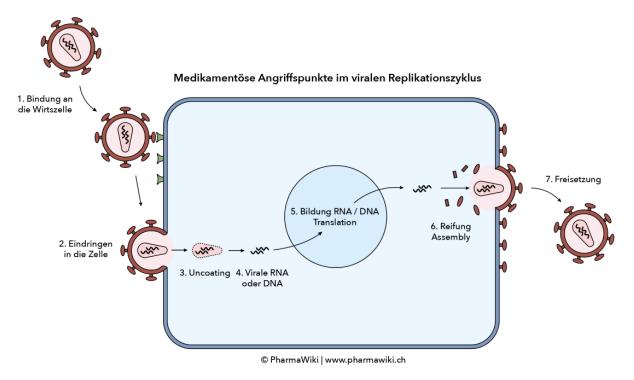


#### Entry Inhibitor - HDV

• Myrcludex: blocks the entry receptor (sodium/bile acid cotransporter (NTCP))

## Attachment-/ Fusion-Inhibitor - HIV

- Fostemsavir, Ibalizumab (mAb): Block virus attachment
- Enfuvirtid: Block virus fusion

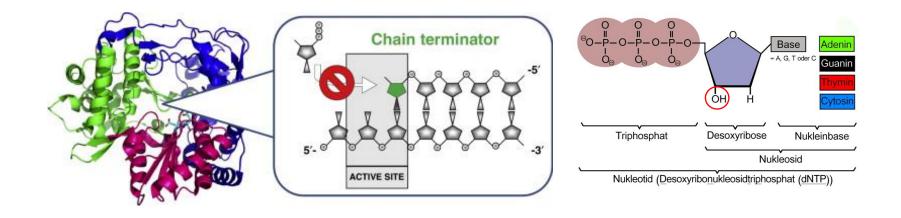

#### Release-Inhibitor - Influenza

• Ion channel inhibitor  $\rightarrow$  Inhibits the release of the viral genome



## **Targets for antiviral drugs**



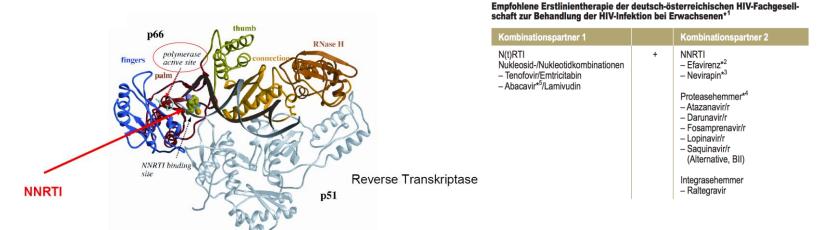



- 1. Docking, entry into the host cell
- 2. Viral enzymes (e.g. reverse transcriptase, DNA/RNA polymerases, integrase)
- 3. Maturation/assembly
- 4. Release of viral particles
- 5. (inhibition of cellular proteins)



## **Polymerase inhibitors**






- Polymerases need free 3'-hydroxy end to synthesize complementary strand
- Nucleoside/nucleotide analogues chain termination
- Danger: cytotoxicity
- Activation: production of triphosphate by cellular enzymes (prodrug)
  - Aciclovir (HSV)
  - Ganciclovir (CMV)

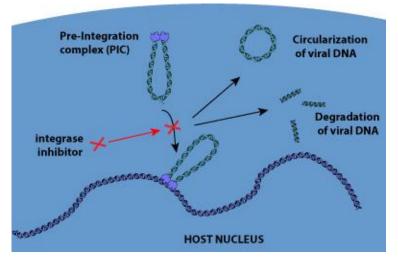


## Non-nucleoside inhibitors





- Binding to outside the active site (e.g. reverse transcriptase (HIV)).
- No incorporation during nucleic acid synthesis


 $\rightarrow$  Allosteric inhibition by blocking RT structure

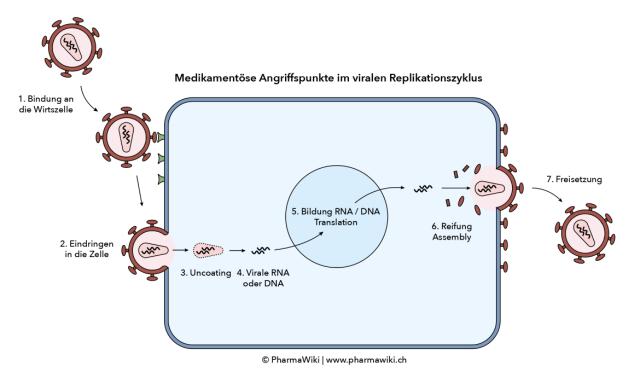
- Non-competitive inhibitors
- Combination with NRTI in HIV



## **HIV-Integrase**





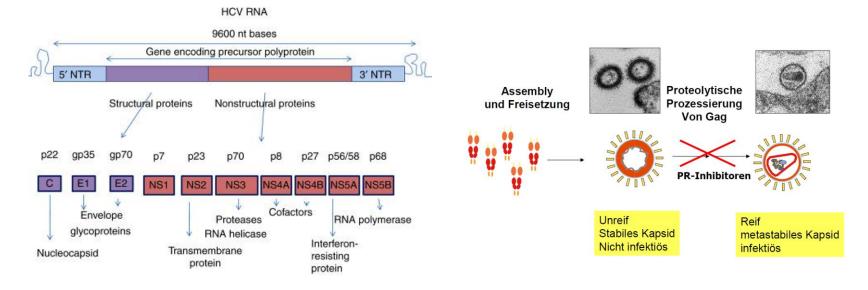

Eintablettenregime			
Integrase in hibitor-basiert	BIC/TAF/FTC		
	DTG/ABC/3TC		
	DTG/3TC		
	EVG/c/TAF/FTC		
NNRTI-basiert	DOR/TDF/3TC		
	RPV/TAF/FTC oder RPV/TDF/FTC ²		
PI-basiert	DRV/c/TAF/FTC		
Mehrtablettenregime			
Integrase inhibitor-basiert	DTG + TAF/FTC oder DTG + TDF/FTC		
	RAL ³ + ABC/3TC ⁴ oder RAL + TAF/FTC oder RAL + TDF/FTC		
NNRTI-basiert	DOR + TDF/FTC oder DOR + TAF/FTC oder DOR + ABC/3TC		
PI-basiert	DRV/r + ABC/3TC oder DRV/r + TAF/FTC		

- Inhibition of integration of HIV DNA into the genomic DNA of the host cell
- Often rapid and effective reduction of viral load
- High resistance barrier
- Current ART guidelines primarily recommend integrase inhibitors in initial therapy



## **Targets for antiviral drugs**



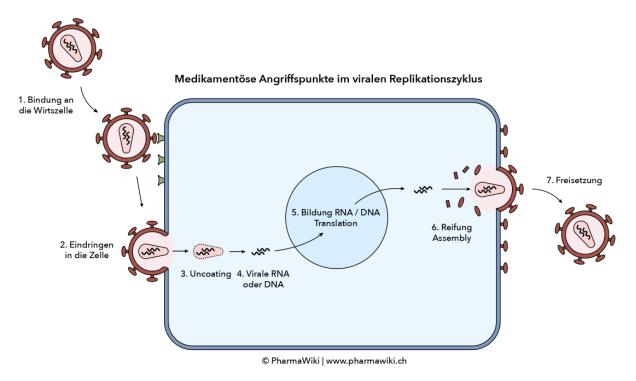



- 1. Docking, entry into the host cell
- 2. Viral enzymes (e.g. reverse transcriptase, DNA/RNA polymerases, integrase)
- 3. Maturation/assembly
- 4. Release of viral particles
- 5. (inhibition of cellular proteins)



## **Protease inhibitors**



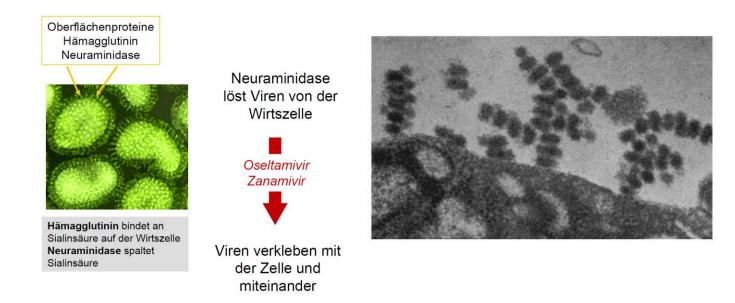



- Virus-derived proteases cut polypeptide precursors into mature enzymes and structural proteins → Essential during viral live cycle
- Binding in the active site (peptide-like structure)
- Eample: HIV, HCV and SARS-CoV-2 (Paxlovid)



## **Targets for antiviral drugs**





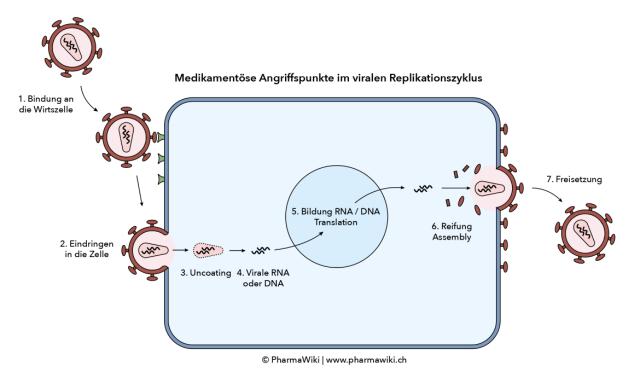

- 1. Docking, penetration into the host cell
- 2. Viral enzymes (e.g. reverse transcriptase, DNA/RNA polymerases, integrase)
- 3. Maturation/assembly
- 4. Release of viral particles
- 5. (inhibition of cellular proteins)



## **Release Inhibitors**





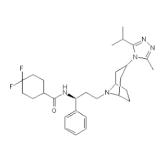

Neuraminidase inhibitors block the release of influenza viruses (oseltamivir; zanamivir).

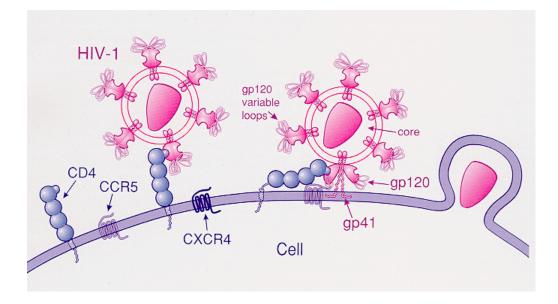
Prophylaxis in high-risk patients  $\rightarrow$  Alleviation of symptoms, shortening of illness duration and reduction of complications



## **Targets for antiviral drugs**





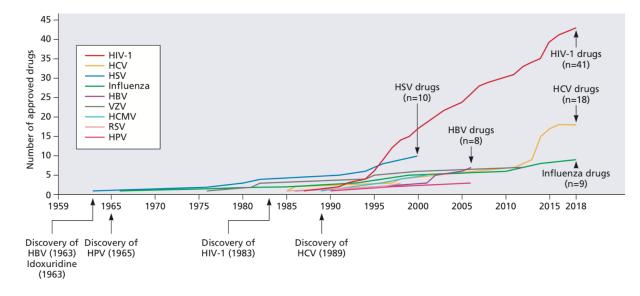


- 1. Docking, entry into the host cell
- 2. Viral enzymes (e.g. reverse transcriptase, DNA/RNA polymerases, integrase)
- 3. Maturation/assembly
- 4. Release of viral particles
- 5. (inhibition of cellular proteins)



## Host-targeting agents







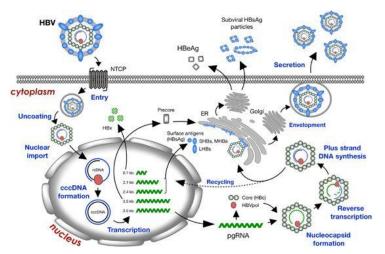

- Maraviroc HIV entry inhibitor
- Inhibition of fusion by inhibition of the coreceptor CCR5
- Use only with CCR5-tropic HIV-1 (not CXCR4-tropic)
- Combination therapy



## **Approved antiviral drugs**






- Only ~100 approved antiviral drugs since 1959
- Most against HIV, HCV, herpesviruses Persistent infections
- Current antiviral agents do not eliminate non-replicating or latent virus



RUB

Compounds interfering with virus growth can adversely affect the host cell

- Side effects are common (unacceptable)
- Every step in viral life cycle engages host functions (selectivity)



Some medically important viruses can't be propagated, have no animal model, or are dangerous

- HBV, HPV
- Ebola, Lassa

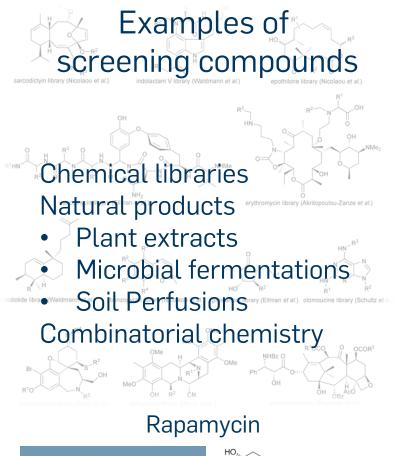




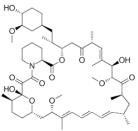
Compounds must be highly potent

- Partial inhibition is not acceptable resistant mutants will arise
- Most compounds are virostatic, there are no antiviral drugs which are a virucide

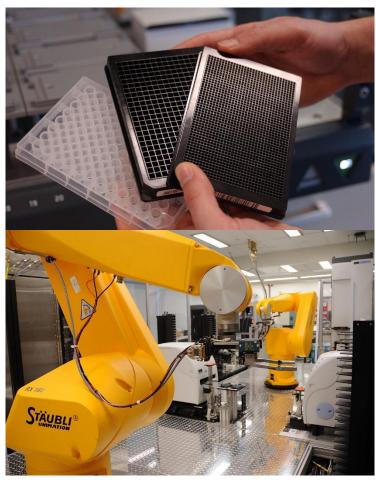



Many acute infections are of short duration

- By the time the patient feels ill, it is too late to impact clinical disease
- Lack of rapid diagnostics




## **Antiviral drugs**










## High throughput screening



## 10,000 compounds/day



## Plate assay – Read outs

HCV genome

**HCV** replicon

**DENV** genome

**DENV** replicon

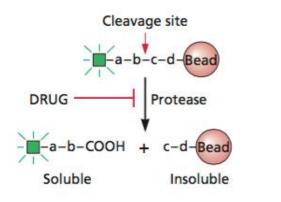
**DENV** replicon

[19]

[40]

[45]

(a)


ii

(b) ii

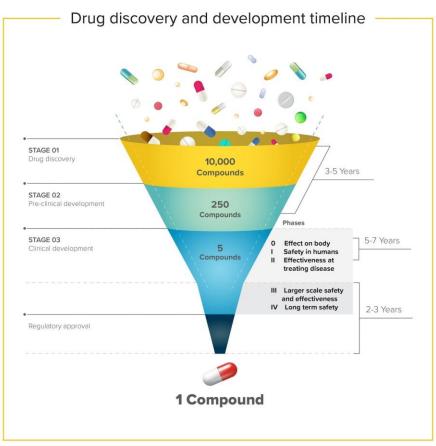

iii



## Mechanism-Based Screen



## Replicon systems




- Inhibition of a specific viral enzyme or molecular interaction
- Low safety requirements

- Subgenomic replicons and mini genome systems
- Self-amplifying recombinant RNA molecules
- Cheap; quick and efficient



## The path of drug discovery



RUB

- Very low success rate
- Estimated costs ~1 Bio USD
- Time consuming process (10-15 years)



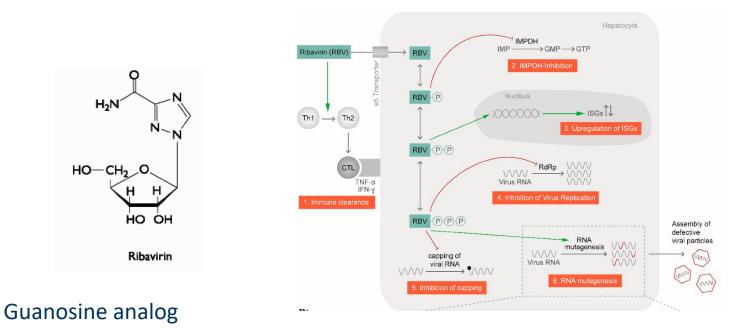
## **Drug repositioning**





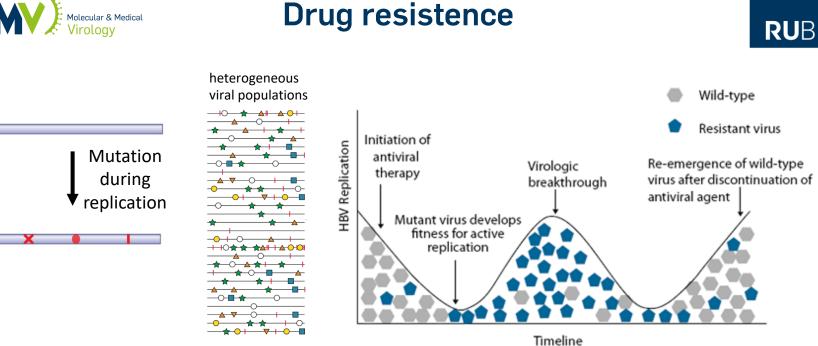
Drug repurposing




Use existing drugs for new therapeutic purposes



٠


## Ribavirin

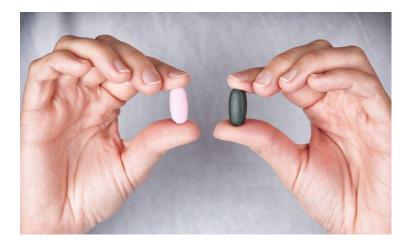


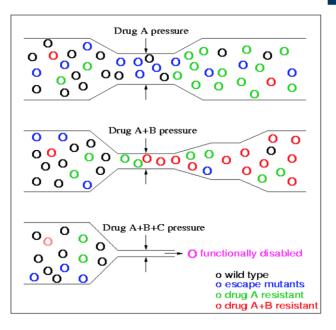


- Relatively unspecific effect (including inhibition of capping, IMPDH inhibition (GTP depletion), RNA mutagenicity)
- Use against various DNA and RNA viruses (e.g. HCV; RSV; Lassa virus; influenza)
  - Currently Off-label use against hepatitis E virus

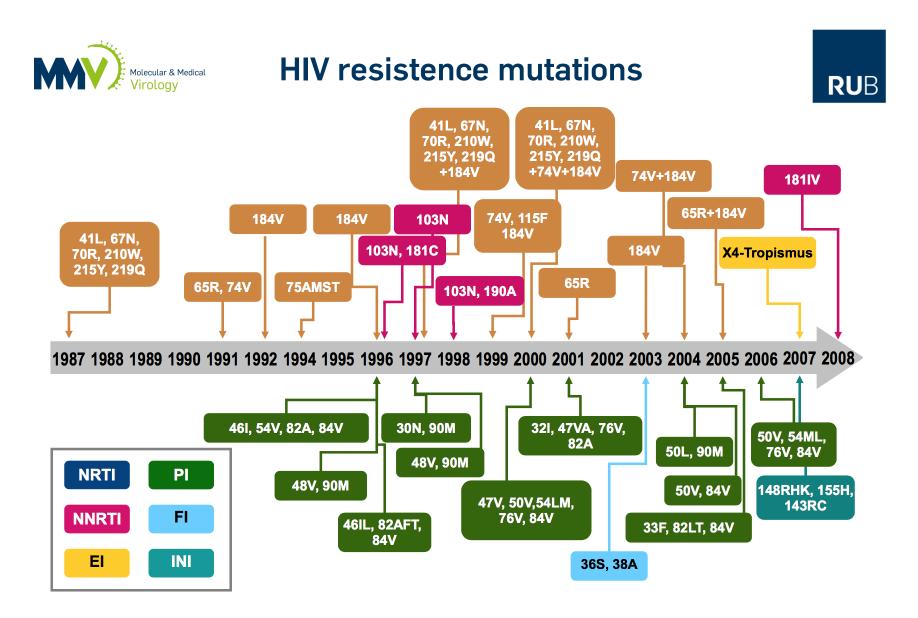





**RNA** viruses: error prone RNA polymerase  $\rightarrow$  heterogeneous viral populations

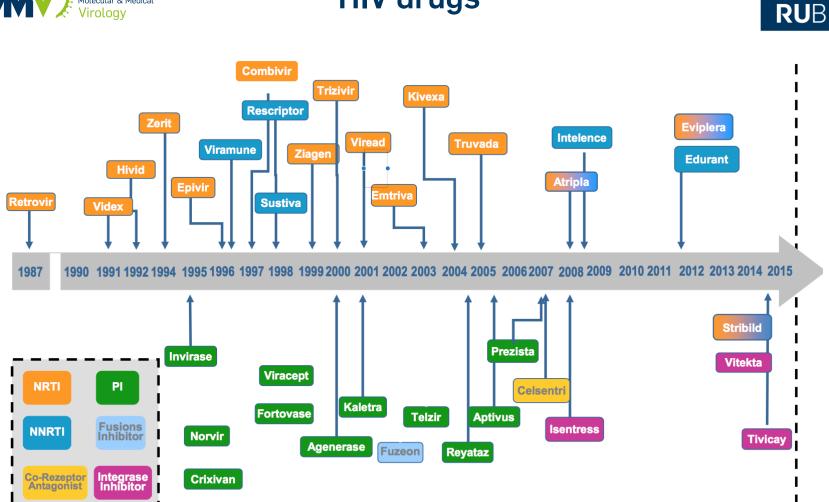

**DNA** viruses: most DNA polymerases have proofreading function  $\rightarrow$  evolve slower




## **Combination therapy**







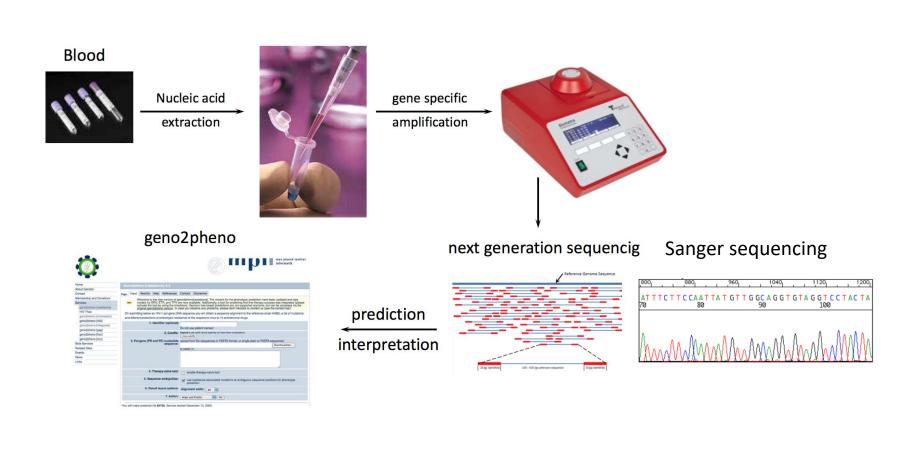

 Stronger selective pressure → Hinders evolution of drug resistances in viruses, bacteria, and cancers



 $\rightarrow$  more than 200 resistance conferring mutations






**HIV drugs** 

## → Approximately 30 HIV drugs



# **HIV resistence mutations**







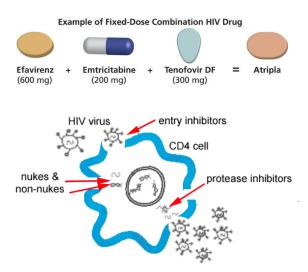
# **HIV combination therapy**



Combivir® +<br/>Crixivan® + Norvir®Videx® + Zerit® +<br/>Viracept®Combivir® +<br/>Agenerase®Image: Combivir® +<br/>Norvir® +<br/>Agenerase®Image: Combivir® +<br/>Norvir® +<br/>Agenerase®Image: Combivir® +<br/>Agenerase®Image: Combivir® +<br/>Norvir® +<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norvir<br/>Norv

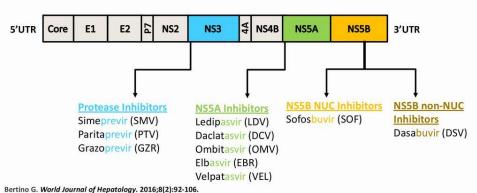
First combination therapies from 1996 (2 RT inhibitors + protease inhibitor)

Initial therapies often with severe side effects


Poor adherence probably most important factor for treatment failure



## **HIV/HCV** therapy




<u>HIV</u>



<u>HCV</u>

#### Approved HCV Direct-acting Antiviral (DAA) Agents



Bertino G. World Journal of Hepatology. 2010,8(2).92-1

Increasingly better HAART approaches minimize adverse drug effects

Almost normal life expectancy with early HAART

#### Direct-acting antivirals (DAAs)

- 95% of chronic infections can be cured
- First chronic virus infection that can be cured

## 5g of diamonds

25 1-carat (\$1900 each)

Cost = \$48,000

Drug



12 weeks of treatment, 60mg/day

Cost = \$63,000 (US price)



**Costs of new drugs for hepatitis C per person, 12-week course** New generation drugs for HCV

_	Cost in USA		Minimum production price			
90,000 US (\$)	4,000					
80,000	\$66	000				
70,000						
60,000						
50,000						
40,000						
30,000						
20,000						
10,000			\$68-\$136	\$130–\$270	\$10-\$30	
0			V	V I		
Sofe	osbuvir Sime	previr	Sofosbuvir	Simeprevir	Daclatasvir	

 Sovaldi® (sofosbuvir)
 2029
 2028
 90,000 US 80,000...

 Harvoni® (sofosbuvir/ledipasvir)
 2030
 2030
 60,000...

 Epclusa® (sofosbuvir/velpatasvir)
 2032
 2032
 2032

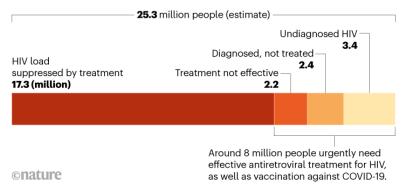
**U.S.** Patent

Expiration

**E.U. Patent** 

Expiration

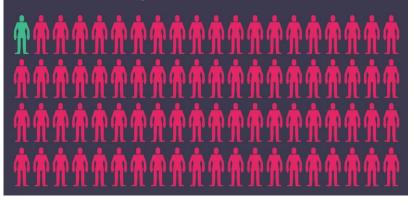
Andrew Hill




# **HIV/HCV** Therapy



#### **AFRICA'S HIV TREATMENT GAP**


Around one-third of people living with HIV in sub-Saharan Africa in 2020 were not getting effective antiretroviral treatment.



Msomi et. al Nature 2021

#### **ACCESS TO HEPATITIS C TREATMENT 2016**

Of 80 million people infected - over 1 million had access to Hep C treatment

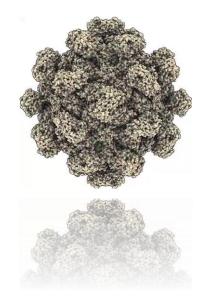




## Summary



## Vaccines


- Stimulation of the adaptive immune system to establish immune memory without pathogenic events
- Active and passive vaccines
- Different types of active vaccines (attenuated virus; inactivated virus.....)

## Antivirals

- Targeting of viral proteins or host factors with small molecules
- Various targets for antiviral drugs (Polymerase; Protease)
- Error-prone viral replication  $\rightarrow$  drug resistance  $\rightarrow$  combination therapy

# Thank you for your attention



