FAMSE: Fundamental Aspects of Material Science and Engineering

(Electro-)catalyst oxide materials - part I

Tong Li

Atomic-scale Characterisation

Institute for Materials
Department of Mechanical Engineering
Ruhr-University Bochum

Sustainable energy cycle

Delivery energy using hydrogen to solve the negative effects of using hydrocarbon fuels

At anode:

$$2 H_2 O \rightarrow 4H^+ + O_2 + 4e^-$$

Alkaline
$$40H^{-} \rightarrow 2H_{2}O + O_{2} + 4e^{-}$$

At cathode:

$$4H^+ + 4e^- \rightarrow 2H_2$$

Hydrogen Evolution Reaction (HER)

Oxygen Evolution Reaction (OER)

Acidic

Structure of lectures

- Basics of electrochemical reactions
- (oxide) electrocatalyst
- Atomic and electronic structure
- Ionic bond
- Covalent bond
- Pauling's rule
- Oxide structure
- Descriptors of electrocatalysts' activity

Electrochemical reactions and electrocatalyst

Applications of electrochemistry

Battery - first invented by Alessandro Volta (1745 - 1817)

Voltaic cell: an electrochemical cell that uses a chemical reaction to produce electrical energy

Applications of electrochemistry

Battery - first invented by Alessandro Volta (1745 - 1817)

Voltaic cell

- As electrons moves from anode to cathode, ions travel through salt bridge
- Salt bridge is to maintain charge balance → Cations travel to cathode, anions travel to anode.

Standard reduction potential

> Standard reduction potential indicates the likelihood that a species to be reduced (measured at 298 K, 1 atm with 1 M solution (opposite to standard oxidation potential)

E _{red} (V)	Reduction Half-Reaction	
+2.87	$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	
+1.51	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(l)$	
+1.36	$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	
+1.33	$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(l)$	
+1.23	$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$	Oxidation Reduction
+1.06	$Br_2(l) + 2e^- \longrightarrow 2Br^-(aq)$	(anode) (cathode)
+0.96	$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$	$7m \mid 7m^2 + \mid C_{11}^2 + \mid C_{21}$
+0.80	$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	$Zn_{(s)} \mid Zn_{(aq)}^{2+} \mid Cu_{(aq)}^{2+} \mid Cu_{(s)}$
+0.77	$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	
+0.68	$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$	Cell potential E_{cell}
+0.59	$MnO_4^-(aq) + 2 H_2O(l) + 3 e^- \longrightarrow MnO_2(s) + 4 OH^-(aq)$	Gett potentiat L _{cell}
+0.54	$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	
+0.40	$O_2(g) + 2 H_2O(I) + 4 e^- \longrightarrow 4 OH^-(aq)$	$E_{cell} = E_{cathode} - E_{anode}$
+0.34	$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	
0	$2 H^{+}(aq) + 2 e^{-} \longrightarrow H_{2}(g)$ What is E_{c}	= 0.34 - (-0.76) = 1.1 V
-0.28	$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$	= 0.51 (0.70) = 1.17
-0.44	$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	
-0.76	$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	
-0.83	$2 H_2O(l) + 2 e^- \longrightarrow H_2(g) + 2 OH^-(aq)$	
-1.66	$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	

-2.71

Gibbs free energy

$$\Delta G = qE = -nFE$$

where n is the number of moles of electrons and F is the Faraday constant (96485C/mol)

$$\Delta G^o = -nFE^0$$

Standard condition (1 atm, 298 K, concentration 1 mol/l)

$$E^{o} = 1.1 V$$

$$= -2 \left(96485 \frac{C}{mole^{-}} \right) \left(\frac{1.1 J}{C} \right)$$

$$= -212.267 \ kJ/mol$$

Spontaneous reaction

Cell potential is positive, ΔG is negative, so when E is negative, ΔG is positive

Nernst equation

At non-standard conditions, what happens?

$$E = E^o - \frac{RT}{nF} lnQ$$

 $E = E^{o} - \frac{RT}{nE}lnQ$ Q = concentration of products/reactants

R: 8.314J k^{-1} mol⁻¹, T = 25 °C, F is 96485C/mol

$$E = E^{o} - \frac{0.0257}{n} lnQ$$
 $E = E^{o} - \frac{0.05916}{n} logQ$

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$
 What is the cell potential?
10 M 0.01 M

$$E = E^o - \frac{0.05916}{n} \log Q = 1.1 - \frac{0.0591}{2} \log \left(\frac{0.01}{10} \right) = 1.19 V$$

→ Increasing the concentration of reactants or decreasing the concentration of products would increase the potential to a higher value \rightarrow stronger driving force to drive the reaction to take place

Standard Nernstian potential of oxygen evolution reaction (OER)

$E_{\mathrm{red}}^{\circ}\left(\mathbf{V}\right)$	Reduction Half-Reaction	
+2.87	$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	 OER
+1.51	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(l)$	OLK
+1.36	$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	v
+1.33	$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(1)$) e
+1.23	$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$	O ₂ H ₂
+1.06	$Br_2(l) + 2e^- \longrightarrow 2Br^-(aq)$	
+0.96	$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$	H'
+0.80	$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	
+0.77	$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	
+0.68	$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$	Electrolyzer
+0.59	$MnO_4^-(aq) + 2 H_2O(l) + 3 e^- \longrightarrow MnO_2(s) + 4 OH^-(aq)$	
+0.54	$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	Acidic solution
+0.40	$O_2(g) + 2 H_2O(l) + 4 e^- \longrightarrow 4 OH^-(aq)$	Cell potential E _{cell}
+0.34	$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	Gett potentiat L _{cell}
0	$2 H^{+}(aq) + 2 e^{-} \longrightarrow H_{2}(g)$	$E_{cell} = E_{cathode} - E_{anode}$
-0.28	$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$	acell acathode anode
-0.44	$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	0 - (1.23) = -1.23 V
-0.76	$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	
-0.83	$2 H_2O(l) + 2 e^- \longrightarrow H_2(g) + 2 OH^-(aq)$	
-1.66	$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	
-2.71	$Na^+(aq) + e^- \longrightarrow Na(s)$	
	M. Carmo et. al. Internationa	ll Journal of Hydrogen Energy, 38(12), 4901 (2013)

Standard Nernstian potential of oxygen evolution reaction (OER)

$E_{\mathrm{red}}^{\circ}\left(\mathbf{V}\right)$	Reduction Half-Reaction	
+2.87	$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	OER
+1.51	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(l)$	OER
+1.36	$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	v
+1.33	$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(aq)$	
+1.23	$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$	O ₂ H ₂
+1.06	$Br_2(l) + 2e^- \longrightarrow 2Br^-(aq)$	
+0.96	$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$	u.
+0.80	$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	<u>H*</u> .
+0.77	$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	
+0.68	$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$	Electrolyzer
+0.59	$MnO_4^-(aq) + 2 H_2O(l) + 3 e^- \longrightarrow MnO_2(s) + 4 OH^-(aq)$	
+0.54	$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	Alkaline solution
+0.40	$O_2(g) + 2 H_2O(l) + 4 e^- \longrightarrow 4 OH^-(aq)$	Cell potential E _{cell}
+0.34	$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	Gett potentiat L _{cell}
o	$2 H^+(aq) + 2 e^- \longrightarrow H_2(g)$	$E_{cell} = E_{cathode} - E_{anode}$
-0.28	$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$	Eceli Ecatnoae Eanoae
-0.44	$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	= -0.83 - (0.40) = -1.23 V
-0.76	$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	_
-0.83	$2 H_2O(l) + 2 e^- \longrightarrow H_2(g) + 2 OH^-(aq)$	$\Delta G^o = -nFE^0$
-1.66	$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$ Spon	taneous or non-spontaneous?
-2.71	$Na^{+}(aq) + e^{-} \longrightarrow Na(s)$	·
	M. Carmo et. al. Internation	al Journal of Hydrogen Energy, 38(12), 4901 (2013)

Standard Nernstian potential of oxygen evolution reaction (OER)

$E_{\mathrm{red}}^{\mathrm{o}}\left(\mathbf{V}\right)$	Reduction Half-Reaction	
+2.87	$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	
+1.51	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(l)$	
+1.36	$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	
+1.33	$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(l)$	
+1.23	$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$	
+1.06	$Br_2(l) + 2e^- \longrightarrow 2Br^-(aq)$	
+0.96	$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$	
+0.80	$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	
+0.77	$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	
+0.68	$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$	
+0.59	$MnO_4^-(aq) + 2 H_2O(l) + 3 e^- \longrightarrow MnO_2(s) + 4 OH^-(aq)$	
+0.54	$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	2 <i>H</i>
+0.40	$O_2(g) + 2 H_2O(l) + 4 e^- \longrightarrow 4 OH^-(aq)$	E0
+0.34	$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	E_{ar}^{o}
0	$2 H^+(aq) + 2 e^- \longrightarrow H_2(g)$	Kin
-0.28	$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$	E_{an}
-0.44	$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	- an
-0.76	$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	
-0.83	$2 H_2O(l) + 2 e^- \longrightarrow H_2(g) + 2 OH^-(aq)$	
-1.66	$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	
-2.71	$Na^+(aq) + e^- \longrightarrow Na(s)$ M. Carmo et. al. International J	lourna

OER

At anode:

$$2 H_2 O \to 4H^+ + O_2 + 4e^-$$

 $E_{anode}^o = -1.23 V$

Kinetically slow

$$E_{anode} = E_{anode}^o + \eta_{anode}$$

Overpotential

M. Carmo et. al. International Journal of Hydrogen Energy, 38(12), 4901 (2013)

Oxide electrocatalysts

What is a catalyst?

- Catalysts are substances that can speed up/slow down chemical reactions.
- > They can do this without being used up or chemically changed as the reactants turn into products.
- > They have essentially the same structure and properties before and after a chemical reaction.

RUB

Why uses catalyst?

- > Catalyst enables the reaction pathways that require lower activation energy
- > It does not change the energy difference between the reactants and products

Progress of reaction

Oxygen evolution reaction

At anode:

$$40H^- \rightarrow 2H_2O + O_2 + 4e^-$$

in alkaline solution

$$OH^- + * \rightarrow HO^* + e^- \tag{1}$$

$$HO^* \to O^* + e^- + H^+$$
 (2)

$$O^* + OH^- \rightarrow HOO^* + e^- \tag{3}$$

$$HOO^* \rightarrow * + O_2(g) + e^- + H^+$$
 (4)

- 1) In particular, OH- first adsorbs on the surface O vacancy site (equation 1).
- 2) The adsorbed OH (OH* species) then undergoes subsequent deprotonation to form O*.
- 3) The following O-O bond formation step allows O* to react with another OH- to form the HOO* intermediate.
- 4) In the final step, O_2 is evolved through the deprotonation of HOO* with regeneration of the active site

Subprocesses and Gibbs free energy change

$$OH^- + * \rightarrow HO^* + e^- \tag{1}$$

$$HO^* \to O^* + e^- + H^+$$
 (2)

$$O^* + OH^- \rightarrow HOO^* + e^-$$
 (3)

$$HOO^* \rightarrow * + O_2(g) + e^- + H^+$$
 (4)

 $(\Delta G_{HOO*} - \Delta G_{HO*}) = 3.2 \pm 0.2$

Volcano plot

Sabatier principle:

- a) If the interaction is too weak, the molecule will fail to bind to the catalyst and no reaction will take place.
- b) if the interaction is too strong, the product fails to dissociate.
- ightarrow The interactions between the catalyst and the substrate should be neither too strong nor too weak

Paul Sabatier (1854-1941, France)

Perovskite ABO3 & spinel oxides - AB2O4

Enthalpy of lower to higher oxidation oxide

- IrO₂ and RuO₂ are active OER electrocatalysts in acidic media, but they are expensive
- > Spinels and perovskites (ABO₃, AB₂O₄) are promising
- Regulating the electronic structure can optimize the value of $\Delta G_{O*} \Delta G_{HO*} \rightarrow$ substituting with foreign elements, creating vacancies, tuning the strain and engineering the interface

 e_g orbital occupancy: The lower the eg occupancy, the stronger the binding of oxygen

	Mn ³⁺ (3d ⁴)	Mn ²⁺ (3d ⁵)	Mn ⁴⁺ (3d ³)
High spin	e _g ↑	11	
Hig	† _{2g}	+++	
spin	e g ——		
Low spin	† _{2g} # + +	##+	+++

Metal-oxygen covalency

> Increasing the electronegativity of transition metal typically moves the metal d state close to O 2p state \rightarrow decreasing the binding dissociation bonds of M-O \rightarrow improving OER activity

Atomic/electronic structure of atoms

Atomic structure

- What is this element?
- → It contains 6 neutrons and 6 protons
- → It is orbited by 6 electrons

Atomic number (Z) = number of protons

Mass number (A) = sum of protons and neutrons

Isotopes = protons + neutrons

 $^{12}C = 98,89\%$ (abundance)

 $^{13}C = 1,109\%$

 $^{14}C = 1 \text{ ppt (part per trillion)}$

Electron shells

 Electrons' orbit is quantized with a discrete level K, L, M, N is the principal quantum number n

 orbitals are the regions of space in which electrons are most likely to be found.

Wave function: the probability of finding electrons at certain energy levels within an atom

	Symbol	Possible values
Principal quantum number	n	1, 2, 3, 4,n
Angular momentum quantum number	I	0,1, 2,3,(n-1)
Magnetic quantum number	m _I	-l,1, 0, 1,, l
Spin quantum number	m _s	+1/2, -1/2

- Principle quantum number n : energy of an electron and size of the orbital
- Angular momentum quantum number I: divides the shells into smaller groups of orbitals (subshells), 0, 1, 2, 3, 4, 5 \rightarrow s, p, d, f, g, h (the energy of subshell increases with I) \rightarrow determines shape of the orbital
- Magnetic quantum number m_l : orientation in space of an orbital of a given energy n_l and shape I (individual orbitals)
- Spin quantum number m_s : orientation of the spin axis of an electron (up or down)

Electrons in subshells

 Angular momentum quantum number s, p, d, f, g, h, i, j etc indicates the shapes of orbital

Sub - shell	I	Maximum electrons 2(2l+1)
S	0	2
р	1	6
d	2	10
f	3	14

n	l (l = n-1)	M _I (-I,I)	Number of orbitals	Orbital name	Number of electrons 2(2l+1)
1	0	0	1	1 s	2
2					
3					
4					

n	l (l = n-1)	M _I (-I,I)	Number of orbitals	Orbital name	Number of electrons 2(2l+1)
1	0	0	1	1 s	2
2	0	0	1	2s	2
	1	-1, 0, 1	3	2p	6
3	0	0	1	3s	2
	1	-1, 0, 1	3	3p	6
	2	-2, -1, 0, 1, 2	5	3d	10
4	0	0	1	4s	2
	1	-1, 0, 1	3	4p	6
	2	-2, -1, 0, 1, 2	5	4d	10
	3	-3, -2, -1, 0, 1, 2, 3	7	4f	14

FAMSE: Fundamental Aspects of Material Science and Engineering

(Electro-)catalyst oxide materials - part II

Tong Li

Atomic-scale Characterisation

Institute for Materials
Department of Mechanical Engineering
Ruhr-University Bochum

Perovskite ABO₃ & spinel oxides - AB₂O₄

- > IrO2 and RuO2 are active OER electrocatalysts in acidic media, but they are expensive
- \triangleright Spinels and perovskites (ABO₃, AB₂O₄) are promising
- Design strategies:
- 1) e_q orbital occupancy \rightarrow the higher the e_q occupancy, the better OER activity
- 2) Increasing metal-oxygen covalency → improving OER activity, why?
- 3) Substitution of foreign elements
- 4) Tetrahedral and octahedral sites, which is more active for OER?

Electron orbitals

	Symbol	Possible values
Principal quantum number	n	1, 2, 3, 4,n
Angular momentum quantum number	I	0,1, 2,3,(n-1)
Magnetic quantum number	m _I	-l,1, 0, 1,, l
Spin quantum number	m _s	+1/2, -1/2

- Principle quantum number n : energy of an electron and size of the orbital
- Angular momentum quantum number I: divides the shells into smaller groups of orbitals (subshells), 0, 1, 2, 3, 4, 5 \rightarrow s, p, d, f, g, h (the energy of subshell increases with I) \rightarrow determines shape of the orbital
- Magnetic quantum number m_l : orientation in space of an orbital of a given energy n_l and shape I (individual orbitals)
- Spin quantum number m_s : orientation of the spin axis of an electron (up or down)

Princip quantu numbei	le m	Angular momentun quantum number	Magnetic quantum number			
	n	l (l = n-1)	M ₁	Number of orbitals	Orbital name	Number of electrons
		(1 - 11-1)	(-1,1)	Orbitals	name	2(2l+1)
	1	0	0	1	1s	2
	2	0	0	1	2s	2
		1	-1, 0, 1	3	2p	6
	3	0	0	1	3s	2
		1	-1, 0, 1	3	3p	6
		2	-2, -1, 0, 1, 2	5	3d	10
	4	0	0	1	4 s	2
		1	-1, 0, 1	3	4p	6
		2	-2, -1, 0, 1, 2	5	4d	10
		3	-3, -2, -1, 0, 1, 2, 3	7	4f	14

s, p orbitals

s orbitals: spherically symmetric around the nucleus of the atom. As energy level increases, the electrons are located further from nucleus

p orbitals: three equivalent p orbitals p_x , p_y and p_z . the p orbitals starts to appear at the 2^{nd} energy level, called $2p_x$, $2p_y$, $2p_z$.

d orbitals

- d orbitals \rightarrow 3d_{xy}, 3d_{xz}, 3d_{yz}, 3d_{x²-y²}, 3d_z²
- 3d_{xy}, 3d_{xz}, 3d_{yz} indicate that the orbitals lie in the x-y, x-z and y-z planes; each orbital has four lobes and each lobe points between the axes
- 3d_x²-y², manifest the lobes points along the axes
- 3d_z² looks like p obital wearing a doughnut around its waist
- d orbital appears at the third energy level

Periodic Table/electron configuration

n	l M _I (I = n-1) (-I,I)	Number of orbitals	Orbital name	Number of electrons 2(2l+1)	
1	n=1 1s	_	1 s	2	2
2	n=2 2s $2p$		2s	2	8
	n=3 3s $3p$	3 <i>d</i>	2p	6	
3	11-3		3s	2	8
	n=4 4s 4p	4d 4f	3p	6	
	n=5 5s 5p	5d 5f	3d	10	10
4			4s	2	2
	n=6 6s 6p	6d	4p	6	6
	n=7 7s $7p$		4d	10	
	(arrows indicate the nex be filled by electrons)	kt shell that should	4f	14	_

Periodic Table

Orbital energy levels & electron filling principle

- 1) Aufbau principle: electrons fill subshells of the lowest available energy, followed by the subshells with higher energy
- 2) Hund's rule: if multiple orbital of the same energy are available, electrons occupy different orbital singly before any are occupied doubly
- 3) Pauli exclusion principle: electron that occupy the same orbital must have different spins

RUB

Electronic configuration of S

1s²2s²2p⁶3s²3p⁴

Co: 1s 2s 2p 3s 3p 4s 3d

Electronic configuration of Co²⁺

Co: 1s 2s 2p 3s 3p 4s 3d

Chemical bonds

No sharing of electrons

Unequal sharing of electrons

Equal sharing of electrons

Electronegativity x

The tendency or ability of the atoms to attract electrons from the other elements (electron acceptor)

Chemical bonds

- ➤ Chemical bonds → electronegativity
- a) Difference in electronegativity > 2 \rightarrow ionic bond \rightarrow electrostatic attraction and forming ionic bond
- b) Difference in electronegativity < 1.7, no electrons are stolen but the electrons are shared between nucleus
- Polar covalent bond (difference in electronegativity > 0.5) \rightarrow electron density towards to the one who has higher electronegativity -> slight electron excess in one element compared to the other
- Nonpolar covalent bond (difference in electronegativity $\langle 0.5 \rangle \rightarrow$ electrons are shared more evenly, the atoms have no partial charges

Ionic bond

Mixed

Polar covalent bond

Nonpolar covalent bond

2.0 Electronegativity difference

Ionic bond

Covalent bond

Ionic bond

Ionic bond

- ➤ Chemical bonds → electronegativity
- a) Difference in electronegativity > 2 \rightarrow ionic bond \rightarrow electrostatic attraction and forming ionic bond

➤ Ionic bonding results from the transfer of electrons → making the ionic compound stable due to the electrostatic attraction between positive and negative ions

Oxides

Most oxides have ionic character which involves exchange of electrons

Ionization energy

Remove an electron → cation

Electron affinity

Accept an electron → anion

Ionization energy

Energy required to remove an electron from an atom

Ionization energy

Coulomb's law gives the electrostatic forces between e.g., protons and electrons:

$$F = k \frac{Q_1 Q_2}{r^2}$$

Ionization energy

tong.li@rub.de | Bochum

p block d block

Electron affinity

Electron affinity is the change in energy of a neutral atom when an electron
is added to the atom to form a negative ion

CRC handbook of chemistry and physics

Magnitude of electron affinity (kJ/mol),

p block | d block

s-, p-, and d-block elements

How to calculate ionic bond energy?

e.g., Formation of NaCl from neutral Na and Cl atoms

Na (g)
$$\rightarrow$$
 Na⁺ (g) + e- \triangle E = ionization energy = 494 kJ/mol

$$Cl(g) + e^{-} \rightarrow Cl^{-}(g)$$
 $\Delta E = electron affinity = -349 kJ/mol$

Na (g) + Cl (g)
$$\rightarrow$$
 Na⁺ (g) + Cl⁻ (g) Δ E = 145 kJ/mol \rightarrow Need energy

!! The electronic attraction between Na+ and Cl-

Using Coulomb's law, the Coulombic potential energy is:

$$E_{potential} = \frac{z_1 z_2 e^2}{4\pi \varepsilon_0 r}$$

z = ion charges r = separation distance between ions ϵ_0 = permittivity of free space e=charge of an electron

For NaCl, r = 2.36 Å, $e=1.602 \times 10^{-19}$ C, $\varepsilon_0 = 8.854 \times 10^{-12}$ C²/Jm, Avogadro's constant = 6.022×10^{23} mol⁻¹

What is the Coulomb potential (unit: kj/mol)?

$$\begin{split} E_{potential} &= \frac{(+1)(-1)\left(1.602\times10^{-19}\,C\right)^2}{4\times3.14\times8.854\times10^{-12}\,C^2J^{-1}m^{-1}\times2.34\times10^{-10}m} \times \frac{kJ}{1000}\times\\ &\frac{6.022\times10^{23}}{mol} = -589\,kJ \end{split}$$

- Ionic bond
- e.g., Formation of NaCl from neutral Na and Cl atoms

Na (g)
$$\rightarrow$$
 Na⁺ (g) + e- \triangle E = ionization energy = 494 kJ/mol

$$Cl(g) + e^{-} \rightarrow Cl^{-}(g)$$
 $\Delta E = -electron affinity = -349 kJ/mol$

Na (g) + Cl (g)
$$\rightarrow$$
 Na⁺ (g) + Cl⁻ (g) \triangle E = 145 kJ/mol \rightarrow Need energy

!! The electronic attraction between Na+ and Cl- is -589 kJ/mol

Net energy change Na (g) + Cl (g)
$$\rightarrow$$
 NaCl $\Delta E = -444 \text{ kJ/mol}$

→ Favored reaction

 ΔE measured = -411 kJ/mol

Using Coulomb's law, the Coulombic potential energy is:

$$E_{potential} = \frac{z_1 z_2 e^2}{4\pi \varepsilon_0 r}$$

z = ion charges r = separation distance between ions ε_0 = permittivity of free space e=charge of an electron

Madelung constant → accounts for short-range and long-range geometric facets of forces between two interacting species

Madelung constant

Based on:
$$E_{not} = \frac{z_1 z_2}{z_1}$$

Based on: $E_{pot} = \frac{z_1 z_2 e^2}{4\pi \varepsilon_0 r}$ z = ion charges r = separation distance between ions ε_0 = permittivity of free space

 \mathbf{r}_0

1) First nearest neighbor of Na⁺:
$$E_1 = \frac{-e^2}{4\pi\varepsilon_0 r_0} + \frac{-e^2}{4\pi\varepsilon_0 r_0} = \frac{-2e^2}{4\pi\varepsilon_0 r_0}$$

2) Second nearest neighbor of Na⁺:
$$E_2=\frac{e^2}{4\pi\varepsilon_02r_0}+\frac{e^2}{4\pi\varepsilon_02r_0}=\frac{2e^2}{4\pi\varepsilon_02r_0}$$

3) Third nearest neighbor of Na⁺:
$$E_2 = \frac{-e^2}{4\pi\varepsilon_0 3r_0} + \frac{-e^2}{4\pi\varepsilon_0 3r_0} = -\frac{2e^2}{4\pi\varepsilon_0 3r_0}$$

Total energy:
$$E = -\frac{e^2}{4\pi\epsilon_0 r_0} \left[2\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots\right) \right]$$

2ln2 → Madelung constant

1D NaCl crystal

 $3r_0$

3D NaCl crystal

- 1) First nearest neighbors: 6 Cl^{-} at r_0
- 2) Second nearest neighbors: 12 Na+ at $\frac{r_0}{\sqrt{2}}$
- 3) Third nearest neighbors; 8 Cl- at $\frac{r_0}{\sqrt{3}}$

...

$$E = -\frac{e^2}{4\pi\varepsilon_0 r_0} \left[\frac{6}{1} - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} + \cdots \right]$$
1.74756 for NaCl

a) Using Coulomb's law, the Coulombic potential energy is:

$$E_A = \frac{z_1 z_2 e^2}{4\pi \varepsilon_0 r}$$

z = ion charges r = separation distance between ions ε_0 = permittivity of free space

a) Using Coulomb's law, the Coulombic potential energy is:

$$E_A = \frac{z_1 z_2 e^2}{4\pi \varepsilon_0 r}$$

z = ion charges r = separation distance between ions $\epsilon_0 = permittivity of free space$

b) Born equation to consider the repulsive forces due to two charged species being in proximity:

$$E_r = \frac{B}{r^n}$$

B = constant n = born exponent, between 6-12, depending on the principal quantum number

$$E_{net} = E_A + E_r = \frac{z_1 z_2 e^2}{4\pi \varepsilon_0 r} + \frac{B}{r^n}$$

z = ion charges

r = separation distance between ions

 ε_0 = permittivity of free space

B = constant

n = born exponent, between 6-12

The constant B from Borne equation can be estimated by the minimum energy level

$$E_{bond} = \frac{z_1 z_2 e^2}{4\pi \varepsilon_0 r} (1 - \frac{1}{n})$$

Considering Madelung constant a,

$$E_{sum} = \frac{z_1 \ z_2 \ e^2}{4\pi\varepsilon_0 r_0} \left(1 - \frac{1}{n}\right) \alpha$$

For a mol of crystalline solid,

lattice energy = E bond energy x Madelung constant x Avogadro constant

$$E_{sum} = \frac{N_A z_1 \ z_2 \ e^2}{4\pi \varepsilon_0 r_0} \left(1 - \frac{1}{n}\right) \alpha$$

- N_A: Avogadro constant
- a: Madelung constant for a lattice
- z_1 and z_2 are the charge numbers of cation and anion
- e is elemental charge, $1.6022 \times 10-19 C$
- ϵ_0 is permittivity of free space
- r_0 is the distance to the closest ion
- n is the born exponent

Chemical bonds

No sharing of electrons

Unequal sharing of electrons

Equal sharing of electrons

No clear cut! Degree of ionic character

Fraction of ionic character can be calculated by electronegativity values:

$$IC = 1 - \exp[-0.25(X_M - X_x)^2]$$

X is the electronegativities of the element in a compound MX

IC = 0,67 or $67\% \rightarrow$ this compound is 2/3 ionic (a fair degree of convent bonding)

Covalent bond

Covalent bond

Electrons shared and spend more time between nucleus \rightarrow molecular orbital

Covalent bond - valence bond theory

Covalent bond: a pair of electrons shared between two atoms

Molecular orbitals (MO)

Combination of atomic orbitals (AO) gives rise to molecular orbitals (MO)

Molecular orbitals (MO)

Anti-bonding molecular orbitals are less stable and have higher energy

Bond order = $\frac{1}{2}$ (No. of bonding electrons - No. of anti-bonding electrons)

→ Bond order indicates the number of covalent bond

Molecular orbitals (MO) of p orbitals

o bond are formed by end-to-end overlapping of atomic orbitals (stronger → electrons along the axis of nucleus of atoms)

π bond are formed by lateral (x, y) overlapping of atom orbital (unhybridized p orbitals) (weaker→ electrons concentrate above or below the axis of nucleus of atoms)

Covalent bond strength

Bond

Bond

Bond

Bond	Energy (kJ)		Bond	Bond Energy	Bond	Bond Energy	Bond strength is quantified by bond dissociation energy (BDE) → the energy required to break a specific covalent bond in one mole of gaseous molecules
H–H	436	_	C–S	260	F-Cl	255	
H–C	415	_	C–Cl	330	F–Br	235	
H–N	390	_	C–Br	275	Si–Si	230	
H–O	464	_	C–I	240	Si-P	215	
H–F	569	_	N-N	160	Si–S	225	
H–Si	395	_	N=N	418	Si–Cl	359	
H–P	320	_	N≡N	946	Si–Br	290	
H–S	340		N-O	200	Si–I	215	\rightarrow E.g., H ₂ (g) \rightarrow 2H (g) \triangle H° = 436 kJ
H–Cl	432	_	N-F	270	P-P	215	
H–Br	370	_	N-P	210	P-S	230	→ When one bonds to various atoms in a group, the bond strength typically decreases as we move down to the group
H–I	295	_	N-Cl	200	P-Cl	330	
C–C	345	_	N-Br	245	P–Br	270	
C=C	611	_	0–0	140	P-I	215	
C≣C	837	_	0=0	498	S–S	215	
C–N	290	_	0–F	160	S–CI	250	
C=N	615	_	O–Si	370	S–Br	215	→ Triple bond > double bond > single
C≡N	891	_	O-P	350	CI–CI	243	bond
C-O	350	_	O-Cl	205	Cl–Br	220	
C=O	741	_	0–I	200	Cl–I	210	
C≣O	1080	_	F–F	160	Br–Br	190	
C–F	439	_	F–Si	540	Br–I	180	
C–Si	360	_	F–P	489	I–I	150	
C-P	265		F–S	285			tong.li@rub.de Bochum

Hybridization

Hybridization model explains molecules with double or triple bonds p orbital

Chemical bonds

No sharing of electrons

Unequal sharing of electrons

Equal sharing of electrons

Electronegativity

- > What kind of Co-O, Fe-O and Ni-O bond?
- > What is the trend in bond strength among Co-O, Fe-O and Ni-O?

CRC handbook of chemistry and physics

M-O bond strength (bond dissociation energy)

- > Increasing the electronegativity towards the right in the transition metal series, M-O strength decreases
- > The element with the lowest electronegativity should have the largest interaction with oxygen

Moltved and Kepp, J. Phys. Chem. C 2019, 123, 18432

Crystal field theory

- Crystal field theory: metal ion and set of ligands can be treated as charged particles (neglect the covalent bond defined by valence bond theory, instead, it is simply electrostatic or ionic)
 - 1) attraction: between positive ion and negative ligand
 - 2) repulsion: d electrons of metals and surrounding negative ligand

1) Stronger repulsion → d_z² and d_x²-y² orbitals are destabilized

2) Less repulsion \rightarrow d_{xy} , d_{xz} , d_{yz} are stabilized by the same amount

Octahedral crystal field splitting diagram

- → ligand are negative charges can be repulsive to the d orbital
- → the energy levels of metal's d orbital are altered from those in the free metal ions
- → some experience more opposition from d orbital electrons than others because of the geometric structure of molecules
- → such electrostatic environment create a splitting of d orbital

 Δo : octahedral crystal field splitting energy

Spectrochemical series

$$I^{-} < Br^{-} < Cl^{-} < NO_{3}^{--} < F^{-} < OH^{-} < H_{2}O < Pyridine < NH_{3} < NO_{2}^{--} < CN^{-}$$

Weak field ligand

Strong field ligand

Small field splitting energy Δ o

Large field splitting energy ∆o

Fe: $1s^22s^22p^63s^23p^64s^23d^6$ Fe3+: $1s^22s^22p^63s^23p^64s^03d^5$

Jahn Teller effect

Elongation Jahn-Teller distortion \rightarrow Increase the $d_{x^2-y^2}$ and d_{xy} orbital energy → Elongation lower the repulsion and increase the complex

Crystal structure of oxides

Closed packed sites

Body centered cubic (BCC)

Face centered cubic (FCC)

Hexagonal close packing (HCP)

Interstitial sites

Anions: closed packed arrangement

Cations: interstitial sites

Interstitial sites

FCC contains 8 tetrahedral sites and 4 octahedral sites (12/4+1)

ABO_3 (LaCoO₃, CaTiO₃ etc)

Anions and A site cations form FCC arrangement

B site occupies the octahedral sites

A site coordination: 12

B site coordination: 6

1 out of 4 octahedral sites is filled

Spinel structure AB₂O₄

Oxygen on the lattice sites, and A and B cations are in the interstitial sites

Normal spinel

$$(A^{2+})[B^{3+}_{2}]O^{2-}_{4}$$

(): tetrahedral sites

[]: octahedral sites

Inverse spinel

$$(B^{3+})[A^{2+}B^{3+}]O^{2-}_{4}$$

A cation is larger than B cation→ A goes to larger octahedralsites

Spinel structure AB₂O₄

A cations in 2 tetrahedral sites and B cations 1,5 octahedral sites A cations in 0 tetrahedral sites and B cations 2,5 octahedral sites

1/8 of the tetrahedral sites of $\frac{1}{2}$ octahedral sites

02-

B³⁺

A2+

Figure 6.1 Various types of defects typically found in ceramics. Misplaced atoms can only occur in covalent ceramics due to charge considerations.

Charges are associated → neutralized charges

Schottky defects

- → charge-equivalent number of vacancies formed on each sublattice
- \rightarrow Remove a formular unit (remove +1 and -1 charges, that is charge equilibrium numbers

Frenkel defects

→ Ion vacancy on a regular lattice site migrates to interstitial site
e.g., Ag+ leaves the lattice site and moves to the interstitial site

electrocatalysts' design - descriptors

Perovskite ABO3 & spinel oxides - AB2O4

Enthalpy of lower to higher oxidation oxide

- Spinels and perovskites (ABO₃, AB₂O₄) are promising
- Design strategies:
- 1) e_g orbital occupancy \rightarrow the higher the e_g occupancy, the better OER activity 2) Increasing metal-oxygen covalency \rightarrow improving OER activity, why?
- 3) Substitution of foreign elements
- 4) Tetrahedral and octahedral sites, which is more active for OER?

Fe3+: $1s^22s^22p^63s^23p^64s^03d^5$

Weak ligand: $[Fe(H_2O)_6]^{3+}$

Strong ligand: $[Fe(CN)_6]^{3-}$

 Δ o < paring energy (high spin complex \rightarrow maximum number of unpaired electrons)

△o > paring energy (low spin complex → minimum number of unpaired electrons) high spin state → lower the adsorption energy → better OER activity

Doping/strain engineering etc

	Cr³+ (3d³)	Mn ³⁺ (3d ⁴)	Fe ³⁺ (3d ⁵)	Co ³⁺ (3d ⁶)	Ni ³⁺ (3d ⁷)
High spin		$e_g \downarrow t_{2g}^3 e_g^1$ $t_{2g} \downarrow +$	$ \uparrow \uparrow \\ t_{2g}^3 e_g^2 $ $ \uparrow \uparrow \uparrow \uparrow $	$ \begin{array}{c} \downarrow \downarrow \\ t_{2g}^4 e_g^2 \\ \downarrow \downarrow \uparrow \downarrow \uparrow \end{array} $	$ \begin{array}{c} \uparrow \downarrow \\ t_{2g}^{5}e_{g}^{2} \\ \downarrow \downarrow \downarrow \downarrow \uparrow \end{array} $
Low spin	$\begin{array}{ccc} \mathbf{e}_{g} && \\ & t_{2g}^{3} e_{g}^{0} \\ \\ \dagger_{2g} & \uparrow \uparrow \uparrow \end{array}$	$t_{2g}^4 e_g^0$	$$ $t_{2g}^{5}e_{g}^{0}$ $++++$	$\begin{array}{c}\\ t_{2g}^6 e_g^0 \\ \downarrow \downarrow \downarrow \downarrow \downarrow \end{array}$	$t_{2g}^{6}e_{g}^{1}$

e_a orbital occupancy

- > Substitution with cations with different valences or electronegativities or the creation of oxygen vacancies can effectively tailor the 3d electron occupancy and oxidation state of octahedral metal centers
- \triangleright E.g., CaMnO₃ \rightarrow CaMnO_{2.4} (removing lattice oxygen) what would change?? What is d coordination of Mn?
- → changing oxidation state and spin state of Mn from Mn⁴⁺ (3d³) to highspin-state Mn³⁺ (3d⁴)
- ightarrow the e $_{\rm g}$ electron of 1 would decrease adsorption strength for intermediates better OER activity

	Mn ³⁺ (3d ⁴)	Mn ⁴⁺ (3d ³)
High spin	e g	
	† _{2g}	
Low spin	e _g — —	
	† _{2g} ———	+++

Metal-oxygen covalency

- ightharpoonup e_g orbital occupancy of a metal cation is based on the crystal field theory
- ➤ Oxides have both ionic and covalent nature of bonding → metal-oxygen covalency descriptor to consider the sharing electrons along the metaloxygen bond
- > Increasing the electronegativity of transition metal typically moves the metal d state close to O 2p state \rightarrow decreasing the binding dissociation bonds of M-O \rightarrow improving OER activity

Substitution of foreign elements in perovskites

Replace La3+ with Ca2+, what would change?

- → Oxygen vacancy
- → Electron holes by moving one electron away from Co

Substitution of foreign elements in spinels

Reaction potential versus binding energy difference of $\Delta G_{O*} - \Delta G_{HO*}$

By replacing Fe with Co or Ni leads to a slightly lower oxygen binding energies

Liao et al. JACS, 2012, 134,13296-13309

ternary oxyhydroxides with the optimized binding energy

Zhang et al. Science, 2016, 352, 333-337

Tetrahedral or octahedral sites?

A cations in 2 tetrahedral sites and B cations 1,5 octahedral sites

A cations in 0 tetrahedral sites and B cations 2,5 octahedral sites

1/8 of the tetrahedral sites of $\frac{1}{2}$ octahedral sites

 O^{2-}

B3+

A2+

Tetrahedral or octahedral sites

Interaction between the octahedral TM and O is more effective than the tetrahedral TM-O interaction.

Active intermediate species

Co2+ at Tetrahedral sites \rightarrow active CoOx(OH)y species \rightarrow OER activity

Reference books

Fundamental of Ceramics

Introduction to Ceramics