3 Grundlagen der Eindimensionalen Analysis

3.1 Grundbegriffe und Eigenschaften von Funktionen

Die Aufgaben in diesem Themenbereich behandeln grundlegende Begriffe zu und Eigenschaften von Funktionen, wie Injektivität, Surjektivität und Bijektivität am Beispiel elementarer reeller Funktionen.

Inhaltsverzeichnis

3.1.1	Bilder und Urbilder reeller Funktionen	131
	3.1.1.1 Bild und Urbild einer quadratischen Funktion	131
	3.1.1.2 Bilder reeller Funktionen	132
	3.1.1.3 Urbilder reeller Funktionen	133
3.1.2	Injektitvität, Surjektivität und Bijektivität	134
	3.1.2.1 Injektivität und Surjektivität (1)	134
	3.1.2.2 Injektivität und Surjektivität (2)	135
3.1.3	Periodische Funktionen	136
	3.1.3.1 Periodische Funktionen	136

Dieser Textauszug stammt aus "Handreichung und Übersicht zu den Materialien des Projekts 'diAM:INT" von Hakim Günther (WH), Tim Inoue (WH), Dr. Michael Kubocz (RWTH), Dr. Benjamin Schulz-Rosenberger (RUB) und Emma van der Smagt (RUB) und steht unter der Lizenz Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International (CC BY-SA 4.0). Die Lizenzbedingungen können unter https://creativecommons.org/licenses/by-sa/4.0/deed.de eingesehen werden.

Bilder und Urbilder reeller Funktionen 3.1.1

3.1.1.1Bild und Urbild einer quadratischen Funktion

Tags Quadratische Funktion, Bild, Urbild

Screenshot (Stand 06.10.2024)

> Gegeben ist die Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = 3x^2 + 12x + 3.$ (a) Bestimmen Sie das Bild f(U) der Menge U=[-5,2] unter f. Geben Sie Ihre Lösung als Intervall an. Beachten Sie die Schreibweise CC(a,b), wenn es sich um das geschlossene Intervall [a,b] und oo(a,b), wenn es sich um das offene Intervall (a,b) handelt. Es ist f(U) =(b) Bestimmen Sie das Urbild $f^{-1}(V)$ der Menge V=(3,66) unter f. Beachten Sie, dass Sie eine Schnittmenge von Intervallen I und J über intersection(I,J) und eine Vereinigung über union(I, J) eingeben, wobei I und J wie in Aufgabenteil (a) festgelegt sind. Es ist $f^{-1}(V) =$

Tim Inoue (Uni-DUE) Autor

Idee Tim Inoue CC BY-SA 4.0 Lizenz

In dieser Aufgabe ist die quadratische Funktion Thema

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \ f(x) = a_2 x^2 + a_1 x + a_0$$

gegeben. In Aufgabenteil (a) soll das Bild f(U) eines abgeschlossenen Intervalls U = [a, b] unter f bestimmt werden. In Aufgabenteil (b) soll das Urbild $f^{-1}(V)$ eines offenen Intervalls V=(c,d) unter f bestimmt werden.

Äguivalenzumformung, Bild und Urbild von Mengen unter einer Funk-Vorkenntnisse

tion

Randomisierung Die Koeffizienten a_2, a_1 und a_0 sind randomisiert. Die Intervalle [a, b]

und (c,d) sind ebenfalls so randomisiert, dass die Lösungen f(U) und

 $f^{-1}(V)$ ganzzahlige Intervallgrenzen besitzen.

Die Funktion f kann um weitere Funktionen ergänzt werden, die Anpassungen

Lösungsmenge muss entsprechend angepasst werden.

3.1.1.2 Bilder reeller Funktionen

Tags Ungleichung, Bild

Screenshot (Stand 06.10.2024)

Betrachten Sie die Funktionen $f,g:\mathbb{R} \to \mathbb{R}$, die definiert sind durch f(x) = 2x + 4, $g(x) = x^2 + 1$. Seien $A,B\subset\mathbb{R}$ Mengen mit $A = \{x \in \mathbb{R} \mid x \ge 2\}, \quad B = \{x \in \mathbb{R} \mid x \le 2\}.$ (a) Bestimmen Sie die Bildmenge f(A). Geben Sie dazu eine die Elemente y von f(A)beschreibende Bedingung in Form einer Ungleichung an. Geben Sie zum Beispiel eine Bedingung $2 < y \le 4$ als y > 2 and y <= 4 oder eine Bedingung y < 2 oder $y \ge 4$ als y < 2 or y >=4 ein. Es ist $f(A) = \{ y \in \mathbb{R} \mid$ }. (b) Bestimmen Sie die Bildmenge g(A). Es ist $g(A) = \{ y \in \mathbb{R} \mid$ }. (c) Bestimmen Sie die Bildmenge g(B). Es ist $g(B) = \{ y \in \mathbb{R} \mid$ }.

Autor Benjamin Herbert Schulz-Rosenberger (RUB)

Idee Benjamin Herbert Schulz-Rosenberger

Lizenz CC BY-SA 4.0

Thema In dieser Aufgabe sind Funktionen $f, g : \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = 2x + a,$$
 $g(x) = x^2 + b$ (3.1.1)

und Mengen

$$A = \{ x \in \mathbb{R} \mid x \ge s_1 \}, \qquad B = \{ x \in \mathbb{R} \mid x \le s_2 \}$$
 (3.1.2)

gegeben. In Aufgabenteil (a) soll das Bild von A unter f bestimmt werden. In den Aufgabenteilen (b) und (c) sollen jeweils die Urbilder von A und B unter g bestimmt werden. Die Urbildmengen sollen mithilfe von Ungleichungen angegeben werden.

Vorkenntnisse Äquivalenzumformung, Bild von Mengen unter Funktionen

Randomisierung Die Konstante a und die Schranken s_1 und s_2 werden zufällig als ganze

Zahlen mit $a \in \{2,4\}, s_1, s_2 \in \{1,2,3\}$ gewählt. Die Konstante b ist

gleich $s_1 - 1$.

Anpassungen keine

3.1.1.3 Urbilder reeller Funktionen

Tags Ungleichung, Urbild

Screenshot (Stand 06.10.2024)

Betrachten Sie die Funktionen $f,g:\mathbb{R}\to\mathbb{R}$, die definiert sind durch

$$f(x) = 2x + 2$$
, $g(x) = x^2 + 3$.

Seien $A,B\subset\mathbb{R}$ Mengen mit

$$A = \{ y \in \mathbb{R} \mid y \ge 4 \}, \quad B = \{ y \in \mathbb{R} \mid y \le 19 \}.$$

(a) Bestimmen Sie die Urbildmengen $f^{-1}(A)$. Geben Sie dazu eine die Elemente x von $f^{-1}(A)$ beschreibende Bedingung in Form einer Ungleichung an. Geben Sie zum Beispiel eine Bedingung $2 < x \le 4$ als x > 2 and x <= 4 oder eine Bedingung x < 2 oder $x \ge 4$ als x < 2 or x >=4 ein.

Es ist
$$f^{-1}(A) = \{x \in \mathbb{R} \mid A\}$$
.

(b) Bestimmen Sie die Urbildmengen $g^{-1}(A)$.

Es ist
$$g^{-1}(A) = \{ x \in \mathbb{R} \mid \}$$
.

(c) Bestimmen Sie die Urbildmengen $g^{-1}(B)$.

Es ist
$$g^{-1}(B) = \{x \in \mathbb{R} \mid \}$$
.

Autor Benjamin Herbert Schulz-Rosenberger (RUB)

Idee Benjamin Herbert Schulz-Rosenberger

Lizenz CC BY-SA 4.0

Thema In dieser Aufgabe sind Funktionen $f, g : \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = 2x + a,$$
 $g(x) = x^2 + b$ (3.1.3)

und Mengen

$$A = \{ x \in \mathbb{R} \mid x \ge s_1 \}, \qquad B = \{ x \in \mathbb{R} \mid x \le s_2 \}$$
 (3.1.4)

gegeben. In Aufgabenteil (a) soll das Urbild von A unter f bestimmt werden. In den Aufgabenteilen (b) und (c) sollen jeweils die Bilder von A und B unter g bestimmt werden. Die Bildmengen sollen mithilfe von Ungleichungen angegeben werden.

Vorkenntnisse Äquivalenzumformung, Urbild von Mengen unter Funktionen

Die Konstante a und die Schranke s_1 werden als ganze Zahlen mit $a \in \{2,4\}$ und $s_1 \in \{2,4,6\}$ gewählt. Die Schranke b ist gleich $s_1 - 1$ und die Schranke s_2 ist gleich $s_1^2 + b$.

Anpassungen keine

Randomisierung

3.1.2 Injektitvität, Surjektivität und Bijektivität

3.1.2.1 Injektivität und Surjektivität (1)

Tags Injektiv, Surjektiv, Bijektiv, Funktion

Screenshot (Stand 06.10.2024)

(a) Entscheiden Sie, ob die nachfolgenden Abbildungen f injektiv, surjektiv oder bijektiv sind, oder keine der genannten Eigenschaften erfüllen.

(i) Die Abbildung $f: \mathbb{R} \longrightarrow \mathbb{R}, \ f(x) = x$ ist (Meine Auswahl zurücksetzen) \Rightarrow .

(ii) Die Abbildung $f: \mathbb{R} \longrightarrow \mathbb{R}, \ f(x) = x^2 - 5$ ist (Meine Auswahl zurücksetzen) \Rightarrow .

(iii) Die Abbildung $f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}, \ f(x) = \frac{1}{x}, \ \text{ist} \ \text{(Meine Auswahl zurücksetzen)} \Rightarrow$.

(b) Geben Sie ein größtes Intervall (a,b), mit $0 < a < b \le \infty$ an, für das die Funktion $f: (a,b) \longrightarrow \mathbb{R}, \ f(x) = x^2$ injektiv ist. Beachten Sie, dass ∞ standardmäßig über infeingegeben wird.

Es sind $a = \max b = 0$ und $b = \infty$, dann ist die Funktion f auf (a,b) injektiv.

Autor Tim Inoue (Uni-DUE)

Idee Tim Inoue Lizenz CC BY-SA 4.0

Thema In Aufgabenteil (a) (i) - (iii) sind Funktionen f dargestellt, bei denen

entschieden werden soll, ob sie injektiv, surjektiv oder bijektiv sind, oder keine der genannten Eigenschaften erfüllen. In Aufgabenteil (b)

ist die Funktion

$$f:(a,b)\longrightarrow \mathbb{R},\ f(x)=x^2$$

gegeben. Es sollen Werte für a und b gefunden werden, sodass (a,b) das

größte Intervall ist, auf dem f injektiv ist.

Vorkenntnisse Injektivität, Surjektivität, Bijektivität, Äquivalenzumformungen, Funk-

tionen

Randomisierung keine

Anpassungen Die Funktionen f in den Aufgabenteilen (a) (i) - (iii) können um weitere

Funktionen ergänzt werden

3.1.2.2 Injektivität und Surjektivität (2)

Tags Injektiv, Surjektiv, Bijektiv, Umkehrfunktion

(Stand 06.10.2024) Screenshot

> Gegeben ist die injektive Funktion f mit $f:[1,\infty)\longrightarrow \mathbb{R}, \quad f(x)=\sqrt{x^2-1}.$ (a) Bestimmen Sie eine Teilmenge $W\subseteq\mathbb{R}$ des Wertebereichs von f , sodass die Abbildung $f:[1,\infty)\longrightarrow W$ umkehrbar ist. Beachten Sie die Schreibweise cc(a,b), wenn es sich um das geschlossene Intervall [a,b] und oo(a,b), wenn es sich um das offene Intervall (a,b) handelt. Die Schreibweise co(a,b) bzw. oc(a,b) bezeichnet analog halboffene Intervalle [a,b) bzw. (a,b]Es ist W =(b) Geben Sie anschließend die Umkehrabbildung f^{-1} an, indem sie den konkreten Funktionsterm $f^{-1}(x)$ Es ist $f^{-1}(x) =$

Tim Inoue (Uni-DUE) Autor

Idee Tim Inoue Lizenz CC BY-SA 4.0

Thema In dieser Aufgabe ist die injektive Funktion

$$f: [1, \infty) \longrightarrow \mathbb{R}, \ f(x) = \sqrt{x^2 - 1}$$

gegeben. In Aufgabenteil (a) soll eine Teilmenge $W \subseteq \mathbb{R}$ bestimmt werden, sodass die Funktion f umkehrbar ist. In Aufgabenteil (b) soll

anschließend die Umkehrfunktion f^{-1} angegeben werden.

Vorkenntnisse Äquivalenzumformung, Bild und Urbild von Mengen unter einer Funk-

tion, Umkehrbarkeit von Funktionen

Randomisierung keine

Anpassungen Die Funktion f kann angepasst werden, solange sie umkehrbar bleibt.

3.1.3 Periodische Funktionen

3.1.3.1 Periodische Funktionen

Tags Sinus, Periode, Funktion

Screenshot (Stand 06.10.2024)

Die Zahl T heißt Periode einer Funktion $f\colon\mathbb{R}\longrightarrow\mathbb{R}$, falls f(x+T)=f(x) für alle $x\in\mathbb{R}$ gilt. Man nennt dann f eine periodische Funktion, falls solch ein $T\neq 0$ existiert.

(a) Die Sinusfunktion $\sin\mathbb{R}\longrightarrow\mathbb{R}$ ist solch eine periodische Funktion. Geben Sie eine Periode T von \sin an. Geben Sie π gegebenenfalls als \mathfrak{P} i ein.
Es ist T=(b) Die Funktion $f\colon\mathbb{R}\longrightarrow\mathbb{R}$ habe die Periode $T=2\pi$. Die Funktion g sei definiert durch $g(x)=f\left(\frac{2x}{5}-4\right)$.
Dann ist auch g eine periodische Funktion mit der Periode T. Bestimmen Sie die Periode T von g. Es ist T =

Autor Tim Inoue (Uni-DUE)

Idee Tim Inoue
Lizenz CC BY-SA 4.0

Thema In dieser Aufgabe wird zunächst der Begriff der Periode T einer Funktion f erläutert. In Aufgabenteil (a) wird eine Periode der Sinusfunktion

abgefragt. In Aufgabenteil (b) ist eine Funktion $f \colon \mathbb{R} \longrightarrow \mathbb{R}$ mit der

Periode $T=2\pi$ gegeben. Ferner ist eine Funktion g durch

$$g(x) = f(ax - b)$$

definiert. Dann ist gebenfalls periodisch und es soll eine Periode \tilde{T} von gbestimmt werden.

Vorkenntnisse Äquivalenzumformung, Periodische Funktionen

Randomisierung Die Koeffizienten a und b sind so randomisiert, dass \tilde{T} ein ganzzahliges

Vielfaches von π bleibt.

Anpassungen Die Funktionen f und g können angepasst werden, solange sie periodisch

bleiben.