

RUHR-UNIVERSITÄT BOCHUM

ADVANCED MATERIALS PROCESSING AND MICROFABRICATION

Technologische Anwendung des Bainit

Struktur

- Übersicht: Bainitische Werkstoffe
- 2. Anwendung für Massivwerkstoffe
 - Vergütungsstahlguss GS 50CrSiNiMo5
 - Advanced Bainitic Steels, z.B. für Schienen
 - Bainitisierter Wälzlagerstahl 100Cr6
 - Austempered Ductice Iron (ADI)
 - Bainitisieren von Gusseisen (ADI) im Druckgussverfahren
- 3. Anwendung für Flachprodukte
 - TRIP-Stahl (siehe "Ein- und Mehrphasenstähle [...]")
- 4. Zusammenfassung
- 5. Literatur

Übersicht: Banitische Werkstoffe

gegossen

Austempered Ductile Iron

Schweißlegierungen mit nadelförmigem Ferrit

umgeformt

Hochfester Bainit (R_{p0,2} 1200-2500 MPa)

Höherfester Bainit (R_{p0,2} <1200 MPa)

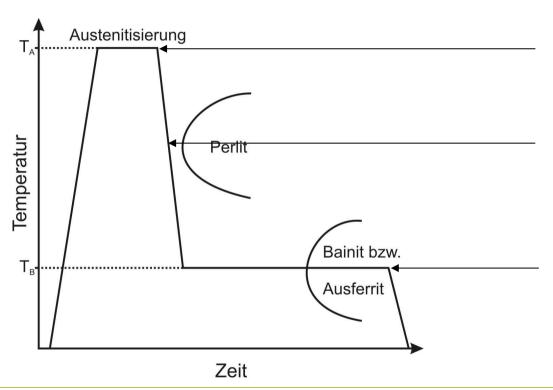
Kriechbest. bainitische Stähle (für T < 570°C)

Schmiedelegierungen für Automotive-Anwendungen (R_{p0,2} <900 MPa)

TRIP-Stahl

Vorzüge des Bainitisierens

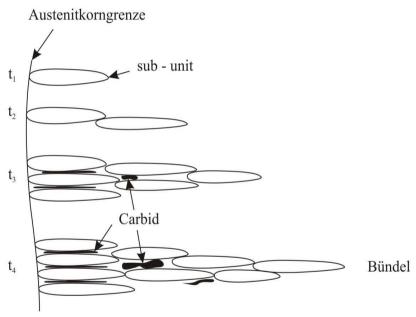
Bainitischer Stahl (-guss)


- Konkurrenz zum Martensit
 - Erzielung höherer Zähigkeiten
 - günstigerer Eigenspannungsverlauf
 - geringerer Verzug
 - Verminderung der Gefahr von Härterissen

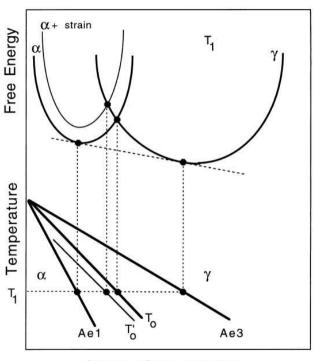
Austempered Ductile Iron (ADI)

- Konkurrenz zu GJS
 - hohe Festigkeit bei hoher Zähigkeit
- Konkurrenz zum geschmiedeten Stahl
 - endformnah
 - hohe Verschleißbeständigkeit
 - gute Dämpfung
 - geringere Dichte

Prozessablauf des Bainitisierens

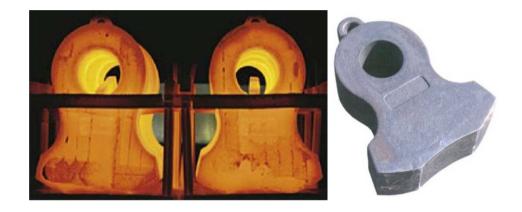

Umwandlung Ferrit/Perlit → Austenit Erhöhung des C – Gehalts im Austenit

Gezielte Abkühlung auf Haltetemperatur Vermeidung der Perlitbildung Gefüge: metastabiler Austenit

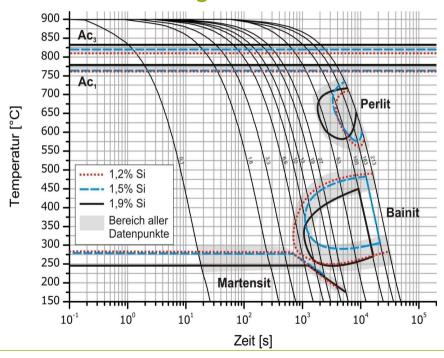

Isotherme Bainitisierung Durch Legierungszusammensetzung und Prozessführung Erhalt von Restaustenit

Bildungskinetik des Bainit & T₀-Kriterium

Quelle: Bhadeshia: Bainite in steels

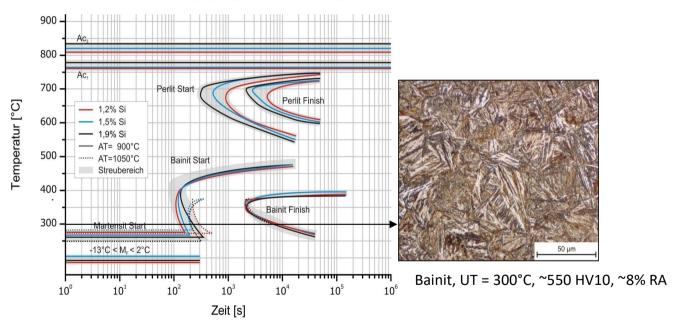


Carbon Concentration



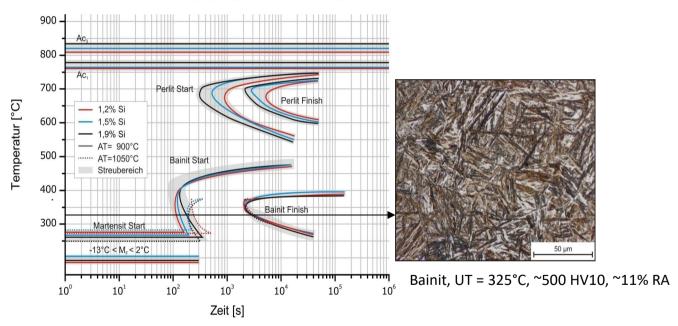
Vergütungsstahlguss GS 50CrSiNiMo5

Kontinuierliches ZTU – Diagramm des Stahles GS 50CrSiNiMo5

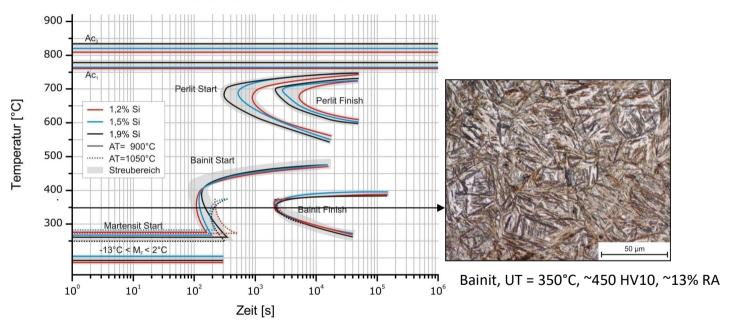

t_{8/5} - Zeiten

 $T_A = 900^{\circ}C$

RUHR UNIVERSITÄT BOCHUM

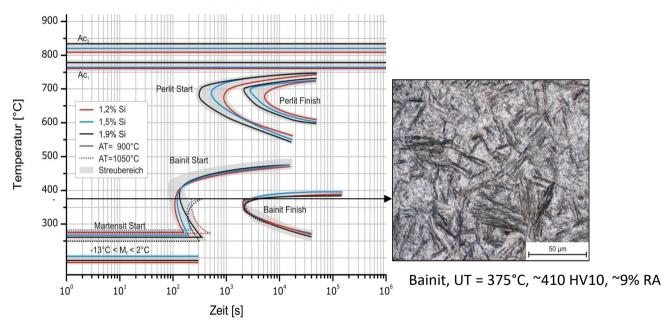


Isothermer Bainit des GS 50CrSiNiMo5

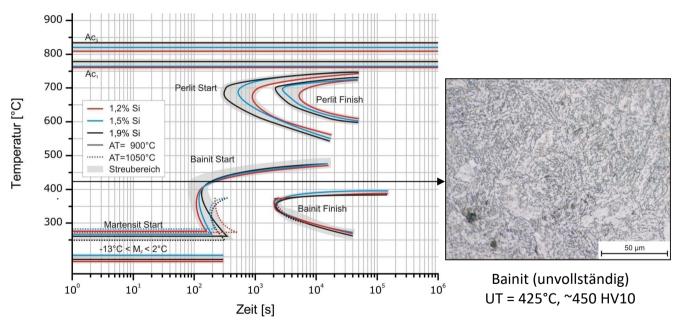


Isothermer Bainit des GS 50CrSiNiMo5

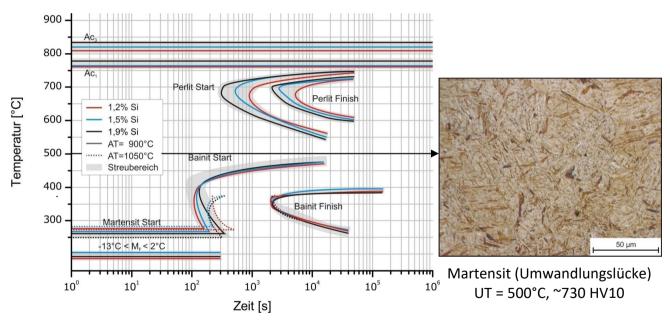
Isothermer Bainit des GS 50CrSiNiMo5



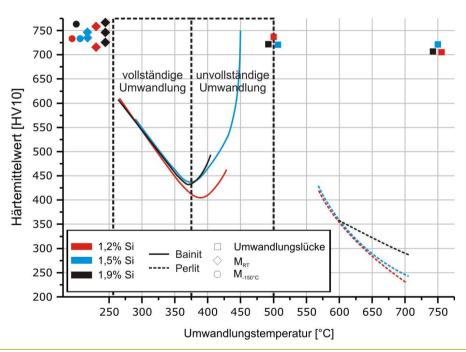
Entwicklung des Gefüges mit 3% HNO3 + 97% Ethanol


11

Isothermer Bainit des GS 50CrSiNiMo5

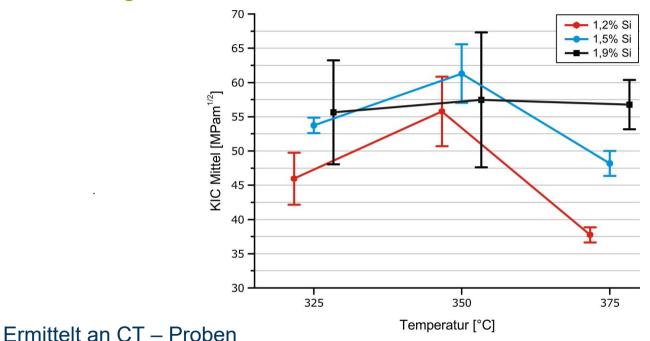


Isothermer Bainit des GS 50CrSiNiMo5



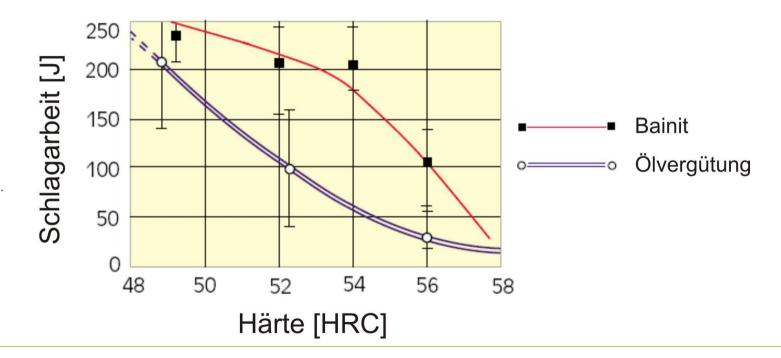
Isothermer Bainit des GS 50CrSiNiMo5

Härte des isothermen Bainits des GS 50CrSiNiMo5

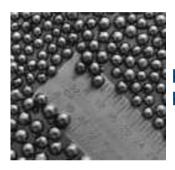


Prüftemperatur: RT

Bruchzähigkeit des isothermen Bainits des GS 50CrSiNiMo5



Bainit von Vergütungsstählen


Vergleich der Schlagarbeit eines vergüteten und eines bainitisierten C67

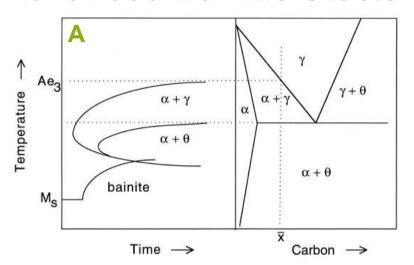
Bainit von Vergütungsstählen

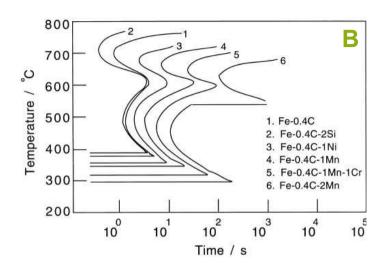
Anwendungen für bainitisierten Vergütungsstahl

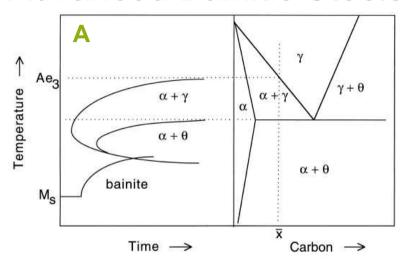
Kugeln zum Kugelstrahlen

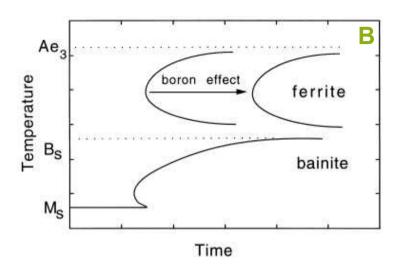
Schredderhämmer für die Schrottzerkleinerung

Schienenräder




Sägeblätter zum Trennen untersch. Werkstoffe


19



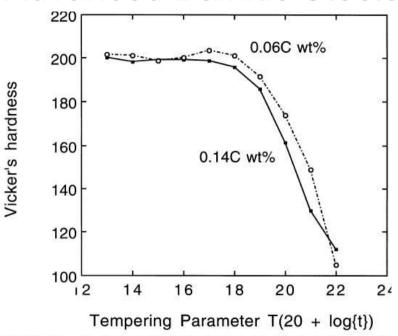
- A) Verknüpfung von Gleichgewichts- und ZTU-Diagramm
- B) Einfluss von Legierungselementen auf Perlit- und Bainit-Umwandlung: Die diffusionskontrollierte Bildung von Perlit wird vor allem durch Zugabe von Mangan verzögert, und zwar wesentlich stärker als die Bildung von Bainit. Einen ähnlichen Einfluss übt Bor aus. Lage der C-Kurven bei tieferer Temperatur durch thermodynamische Stabilisierung des Austenites, gegenläufiger Einfluss von Silizium (vgl. Abbildung A).

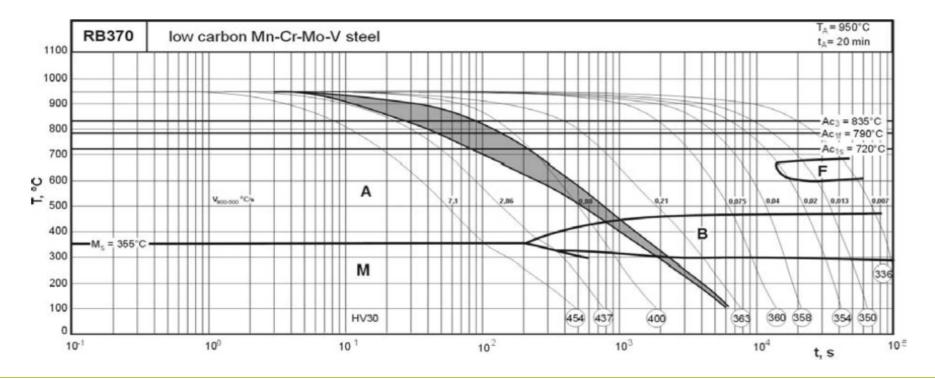
- A) Verknüpfung von Gleichgewichts- und ZTU-Diagramm
- B) Einfluss von Legierungselementen auf Perlit- und Bainit-Umwandlung: Die diffusionskontrollierte Bildung von Perlit wird vor allem durch Zugabe von Mangan verzögert, und zwar wesentlich stärker als die Bildung von Bainit. Einen ähnlichen Einfluss übt Bor aus. Lage der C-Kurven bei tieferer Temperatur durch thermodynamische Stabilisierung des Austenites, gegenläufiger Einfluss von Silizium (vgl. Abbildung A).

Chemische Zusammensetzung ausgewählter "Advanced Bainitic Steels"

С	Si	Mn	Ni	Мо	Nb	Ti	В	Al	N	Nr.
0,04	0,2	1,55	0,2		0,04	0,015	0,00013	0,024	0,003	2
0,12	1,5	1,5						0,045	0,0035	8
0,1	0,25	1,0								5
0,02	0,2	2,0	0,3	0,3	0,05	0,02	0,001		0,0025	9
0,09	0,25	1,0	0,5	1,0	0,1	0,02	0,002	0,04	0,006	15

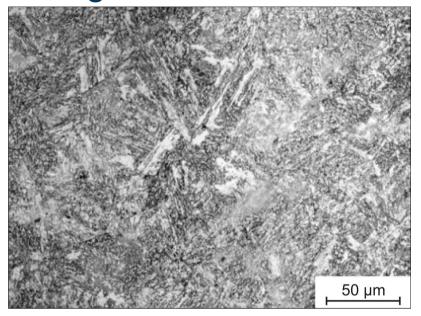
- 2 Bainitisch bei beschleunigter Abkühlung
- 8 TRIP Stahl
- 5 Bainitischer Dualphasen-Stahl
- 9 ULCB ultra low carbon boron steel
- 15 Schmiedelegierung, "100%" Bainit

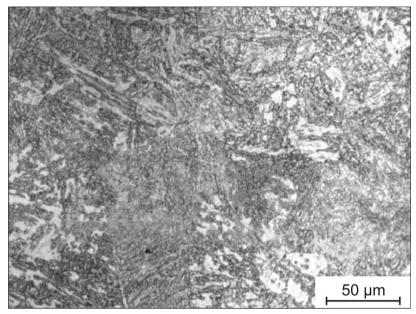



Fig. 4.2 Change in hardness for two bainitic steels containing different carbon concentrations, as a function of a time-temperature tempering parameter (after Irvine and Pickering, 1957). The tempering parameter is defined with the absolute temperature T and the time t in hours.

 Im Vergleich zu Martensit wesentlich geringerer Einfluss des C-Gehaltes auf Härte- und Anlassverhalten

Bhadeshia: Bainite in steels, S. 93


Kontinuierliche ZTU-Diagramme von Radschienenstählen



Gefüge von Radschienenstahl

RB370 RB390

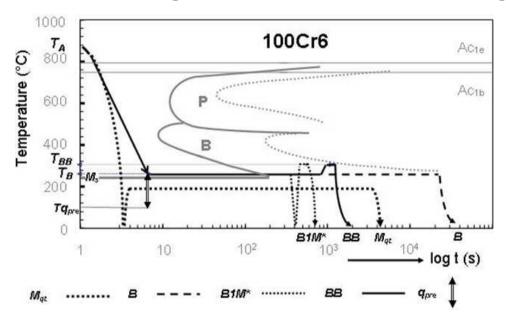
Mechan. Eigenschaften der bainitischen Schienenstähle

	HBW	R _{p0,2} [MPa]	R _m [MPa]	A [%]	Z [%]	KV [J]	K _{IC} [MPam ^{0,5}]	K _{IC,-20°C} [MPam ^{0,5}]
RB370	371-378	843-858	1197-1211	12,2-14,1	38,6-43	28,3-33,9	51,9-54,5	40,3-42,3
RB390	390-398	825-832	1347-1353	13-14,9	43-49	33,2-38,4	90,5-92,1	61,2-63
R350HT	350-390	700-712	1080-1098	10,3-11,1	-	-	23,2-25,6	mind. 32

RB370 & RB390: Bainitische Schienenstähle R350HT: klassicher Schienenstahl (fein-perlitisch)

Bainitische Schienen für den Eurotunnel (Testphase: Beginn Januar 2007)

Verschleiß zweier Schienenstähle im Einsatz

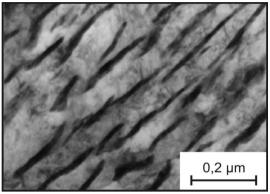


Bainitisierter Wälzlagerstahl 100Cr6

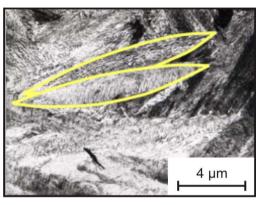
Wärmebehandlungen zur Bainitisierung des 100Cr6

Isothermisches ZTU Diagramm des Stahles 100Cr6 (SAE 52100) mit Bezeichnung der Temperaturzyklen und der Methode einer Vorabschreckung (qpre)

Wärmebehandlungen zur Bainitisierung des 100Cr6


	Prozessdaten für die Praxis				
Zyklen	Austenitisierung	Wärme- behandlung			
M _{angelassen}		Ölabschreckung auf RT / 170°C 2h			
В		230 °C 4 h			
B1M*	845°C 20 min/ (Salzbad)	230 °C 25 min / H ₂ O RT + 250 °C 5 min			
B unvollständig	(Gaizbau)	230 °C 50 min / H ₂ O RT			
845BB		230 °C 50 min + 250 °C 5 min / H ₂ O RT			

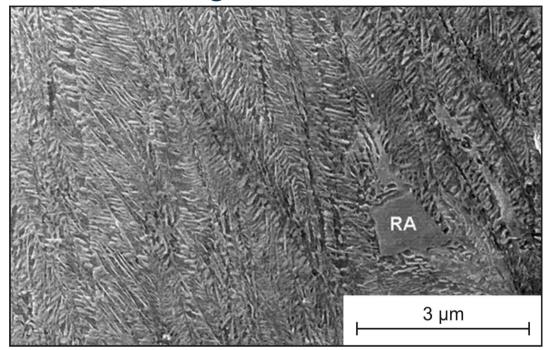
Wärmebehandlungen bezeichnet gemäß DIN EN 10052


REM – Gefügebilder des Bainits des 100Cr6

oberer Bainit

$$T_{\rm B} = 350^{\circ}{\rm C}$$

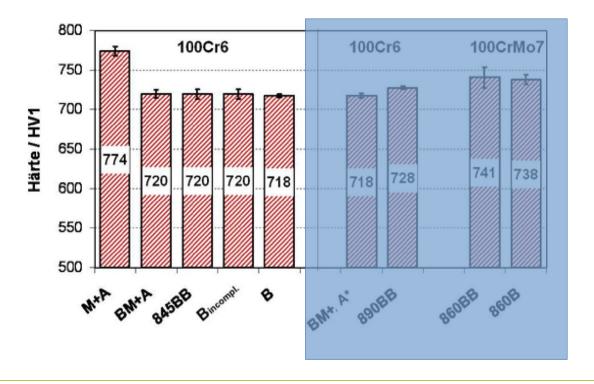
unterer Bainit



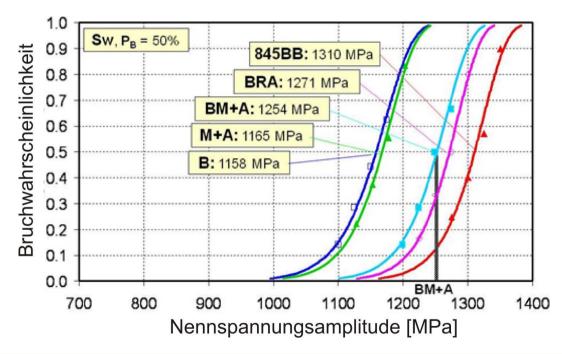
TB = 230°C

- niedrige Temperatur
- hoher Si Gehalt

Dr.-Ing. H. Klümper-Westkamp: "Sensorkontrolliertes Bainitisieren von Gusseisen", Projektvorschlag 04.11. 2008 in Bremen Stiftung Institut für Werkstofftechnik (Bremen), http://www.awt-online.org/uploads/media/Top 7 ADI Guss Sensor 04 11 2008.pdf


REM – Gefügebilder des Bainits des 100Cr6

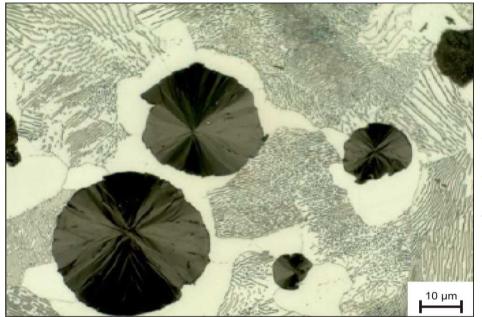
Unterer Bainit mit Restaustenit (RA) nach unvollständiger Umwandlung [Feld Emissions REM (15 keV)] Aufnahme einer elektrolytisch gedünnten TEM Folie]


Härten des 100Cr6 nach verschiedenen Wärmebehandlungen

Vergleich der verschiedenen Wärmebehandlungen

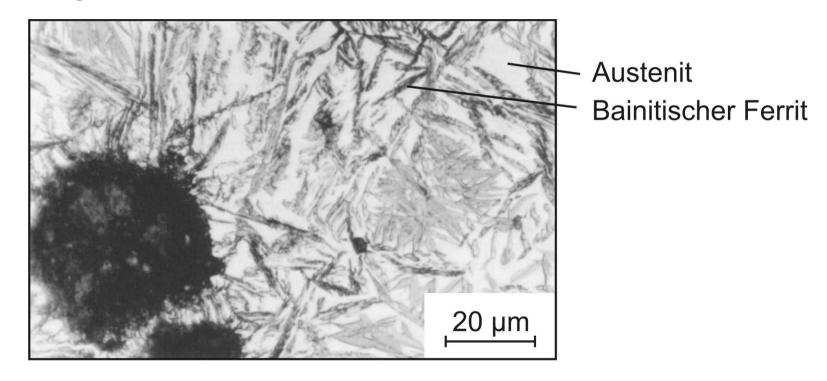
Im Umlaufbiegeversuch:

Anwendungen für bainitischen 100Cr6

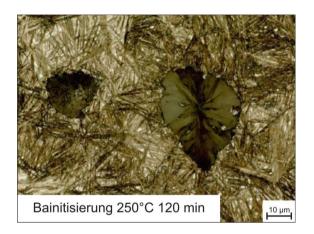

Getriebekomponenten: Zahnräder, Wälzlager, Wellen

Austempered Ductile Iron (ADI)

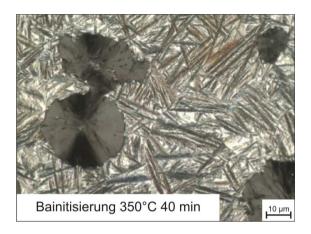
Ausgangsgefüge vor der Bainitisierung


Angaben in Ma.-%

С	Si	Mn	Cr	Ni	Cu
3,6	2,21	0,16	0,07	0,063	0,291

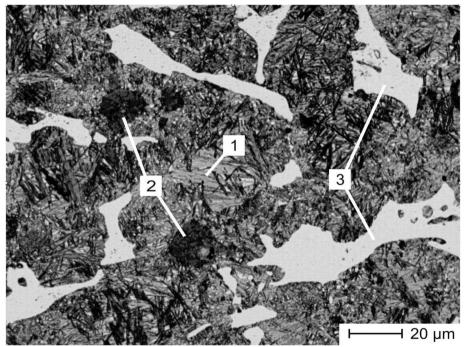

GJS 600-3

37

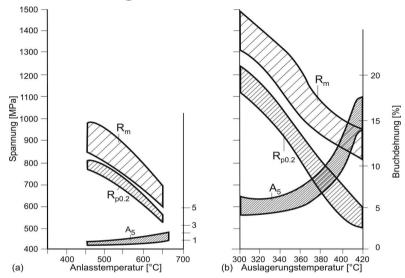

Gefüge des Bainits des ADI

Einfluss der Bainitisierungstemperatur

- hohe Festigkeit
- verringerter Restaustenitgehalt
- erhöhter Bainitgehalt
- niedrige Dehnung



- niedrige Festigkeit
- erhöhter Restaustenitgehalt
- verringerter Bainitgehalt
- hohe Dehnung


Karbidhaltiger ADI

Lichtmikroskopische Aufnahme von karbidischem ADI: 1: Ausferrit; 2: Graphit; 3: Fe₃C

Mechanische Eigenschaften von ADI

Mechanische Eigenschaften von Gusseisen mit Kugelgraphit:

- (a) nach dem Härten von 900°C als Funktion der Anlasstemperatur (nach S. Hasse)
- (b) nach dem Austenitisieren in Abhängigkeit von der isothermen Haltetemperatur zur Umwandlung in der Bainitstufe (nach E. Dorazil et al.)

Anwendungen für ADI

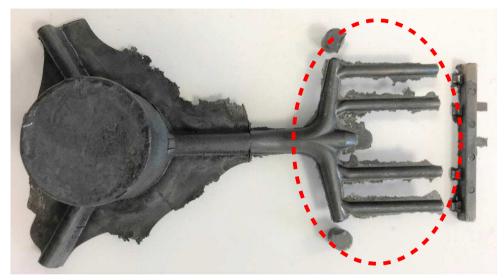
Mahlkugeln

Landwirtschaftliche Anwendungen

Mahlwalzen

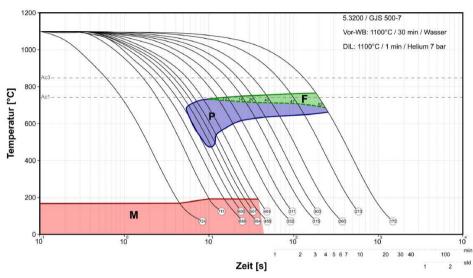
Kurbelwelle

Trägerplatte und montierte Räderkassette für einen 10-Zylinder-Dieselmotor von VW



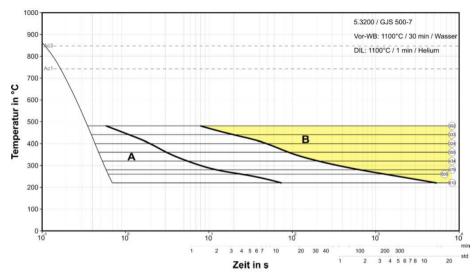
Getriebekomponenten

Filterköpfe in Hydrauliksystemen

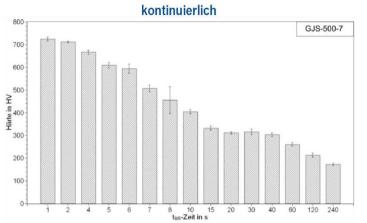


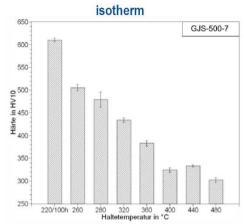
- Herstellung dünnwandiger Bauteile auf Fe-Basis durch einen Druckgieß-Prozess
- Anschließende Bainitisierung ("Austempering") zur Optimierung der mechanischen Eigenschaften (R_m & A)
- Geeignete Werkstoffgruppe: Sphäroguss (GJS)

43

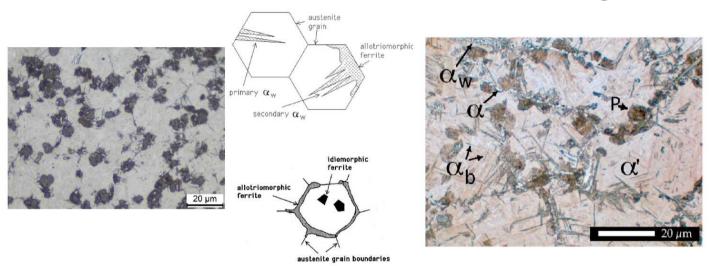


- Analyse des Umwandlungsverhaltens mittels Abschreck-Dilatometrie anhand GJS 500-7
- Ergebnis bei kontinuierlicher Abkühlung: Bildung von Perlit (und Ferrit) ist der Bainitbildung vorgelagert
- Relativ schnelle Umwandlungskinetik führt zu erschwerter praktischer Umsetzung





- Ergebnis bei isothermer Umwandlung: Bainit tritt unterhalb von etwa 500°C auf
- Wie erwartet: Erhebliche Verzögerung der Umwandlung mit abnehmender Temperatur
- Unterere kritische Umwandlungstemperatur ist durch M_s vorgegeben (vgl. vorherige Folie)



- Gegenüberstellung der Härte (HV10) nach kontinuierlicher und isothermer Umwandlung
- t_{8/5}-Zeiten beschreiben die Zeiten, die zum Durchlaufen des T-Intervalls von 800°C bis 500°C benötigt werden
- Niedrige t_{8/5}-Zeiten (kontinuierlich) => Martensit!
- Isotherme Umwandlungen führen zu Bainit + Restaustenit
- Langsame Umwandlung bei T=220°C erfordert lange Umwandlungsdauer von 100h!

- Bainitisierte Werkstoffe sind nie vollständig bainitisch (vgl. "Theorie der Bainitbildung")
- Unterschiedliche Arten an Ferrit können nebeneinander auftreten, abhängig von Umwandlungsparametern
- Optimal bzgl. mechanischer Eigenschaften ist ein hoher Anteil unterer Bainit mit Restaustenit (ohne P, M)

Zusammenfassung

- Anwendung von Bainit für Flachprodukte und Massivwerkstoffe
- Vorteile: Teils höhere Zähigkeit im Vergleich zu angelassenem Martensit, geringerer Verzug, teils einfacher gestaltete Wärmebehandlung
- Eigenschaften stark abhängig von der Umwandlungstemperatur
- Eigenschaften des Bainit weniger abhängig vom C-Gehalt
- "Advanced Bainitic Steels" mit vergleichsweise geringem C-Gehalt
- Wesentliche Legierungselemente: Mn & B zu Verzögerung der Perlitbildung und vergleichsweise geringer Verzögerung der Bainit-Bildung
- Begrenzung der untereren Umwandlungstemperatur durch MS
- Erhebliche Verzögerung der Umwandlung mit abnehmender Temperatur

Überprüfungsfragen

- Was verstehen Sie unter der "Umwandlungslücke"?
- 2. Das Legierungselement Silizium unterdrückt die Bildung von Zementit. Welche negativen Effekte muss man jedoch beachten?
- 3. Welchen Vorteil bietet ein bainitisches Gefüge im Vergleich zu einem auf gleiche Härte vergüteten martensitischen Gefüge?
- 4. Nennen Sie typische Anwendungsbereiche bainitischer Stähle.
- 5. Welche Funktion hat das Element Bor?
- 6. Wofür steht die Abkürzung "ADI"? Wie sieht eine typische Wärmebehandlung aus?
- 7. Was ist mit dem Begriff "Austempering" gemeint?
- 8. Wieso ist die Festigkeit des Bainit weniger abhängig vom C-Gehalt als die eines angelassenen Martensit?

Literatur

- 1. H.K.D.H. Bhadeshia, Bainite in Steels, Cambridge University Press, 2001
- 2. Dr.-Ing. Dieter Liedtke: Merkblatt 450 "Wärmebehandlung von Stahl Härten, Anlassen, Vergüten, Bainitisieren", Ausgabe 2005, ISSN 0175-2006
- 3. Dr.-Ing. P. Sommer, Dr. Sommer Werkstofftechnik, Issum: Bainitisieren eine Maßnahme zur Einsatzoptimierung hochfester Bauteile, http://www.werkstofftechnik.com/zeitschrift/fachartikel/sommer_wbm2002_1.pdf
- 4. Vorlesungsskript "Werkstofftechnik", Prof. Theisen, LWT, RUB

50

Vielen Dank für Ihre Aufmerksamkeit und Ihre Mitarbeit!

Prof. Dr.-Ing. Sebastian Weber Fakultät für Maschinenbau Lehrstuhl Werkstofftechnik Universitätsstr. 150, IC 03-319 D-44801 Bochum

