
Accessing Spatial Data using the
OGC API Features Interface

In this technical tutorial you will learn how to access geospatial data using web services
that implement the OGC API Features interface.
You will use docker to install and run an OGC API Features server on your local
computer and you will learn how to interact with a service instance with a browser, with
QGIS and with Python from a Jupyter notebook.

Soumya Ganguly, Albert Remke

Institute for Geoinformatics, University of Münster

September, 2024

ein Kooperationsprojekt,
empfohlen durch:

gefördert durch:

1. Overview
In this tutorial you will learn how to access geospatial data using web services that
implement the OGC API Features interface.

● We will use docker images to install and run an OGC API Features server on our
local computer providing data on nature reserves

● We will interact with this service instance by using a browser
● We will use QGIS to demonstrate that off-the-shelf software is capable of

interacting with this type of web service in plug-and-play mode.
● We will use a Python Jupyter Notebook to show how you can write programming

code that interacts with OGC API Features

The tutorial is structured as follows:

1. Overview
2. Background

- Feature Data and Feature Services
- Advantages of accessing data with OGC Web Services
- OGC-API series of interface specifications
- OGC-API Features interface

3. Practical exercises
- Use cases and technical setting
- Installing software and data
- Using the web browser to interact with the OGC-API Features service
- Using QGIS to access feature data via the OGC API Features interface
- Using Python to interact with the OGC-API Features service

4. Summary and Discussion

This tutorial is designed for students and professionals who want to improve their
understanding of Spatial Information Infrastructures. We assume that you have some
basic knowledge about geospatial data, QGIS and spatial data analysis. In this case you
will need about 90 minutes to use this tutorial.

This Tutorial has been developed in the context of the OER4SDi project at the Institute
for Geoinformatics, University of Münster. Authors are Soumya Ganguly and Albert
Remke. The latest version of this tutorial is always available on GitHub. You are invited
to use GitHub issues to provide feedback and suggest improvements.

2/24

https://github.com/oer4sdi/OER-DataAccessVia-OGC-API-Features

You are free to use, alter and share the content of the tutorial under the terms of the CC-BY-SA

4.0 license, unless explicitly stated otherwise for specific parts of the content. All logos used are

generally excluded. Any code provided with the tutorial can be used under the terms of the MIT

license. Please see the full license terms:

https://github.com/oer4sdi/OER-DataAccessVia-OGC-API-Features/blob/main/LICENSE.md

The tutorial can be referenced as follows: “OER-DataAccessVia-OGC-API-Features”, OER4SDI

project / University Münster, CC BY-SA 4.0.

The OER4SDI project has been recommended by the Digital University NRW and is funded by the

Ministry of Culture and Science NRW.

2. Background

2.1 Feature Data and Feature Services

Real world objects such as roads, buildings, rivers, and land parcels can be represented
as Features. Features that share a set of properties can be categorized as Feature
Types. One of these properties may be the Geometry that represents the spatial location
and extent of the Feature. The Geometry itself may be modeled in various ways, e.g. as
points, lines or polygons and is based on a specific Spatial Reference System (SRS).
Sets of features of the same feature type can be provided as feature collections.

The ISO 19000 Series of international standards provides a conceptual model of
Features and Geometries as well as a set of encoding rules that can be used to create
Feature Data for example as XML/GML data.

Since many applications don’t need the rich capabilities of the full fledged ISO data
model for geographic information ISO 19125 defines a simplified set of rules for
modeling and working with “Simple Features”. As an alternative to XML/GML, many
applications use GeoJSON for a lightweight JSON encoding of Simple Feature data.

If the ISO Feature model is used for modeling concrete Feature Types such as roads,
rivers, and buildings, the data models are called Application Schemas of the general
feature model. They are often defined by textual documents and UML diagrams and
come along with XML schema files to support the validation of XML encoded Feature
data.

3/24

https://creativecommons.org/licenses/by-sa/4.0/deed.de
https://creativecommons.org/licenses/by-sa/4.0/deed.de
https://github.com/oer4sdi/OER-DataAccessVia-OGC-API-Features/blob/main/LICENSE.md
https://creativecommons.org/licenses/by-sa/4.0/legalcode.en

Access to Feature Data can be provided in various ways. One way is to distribute the
data in the form of a dataset that is encoded e.g. as XML/GML, GeoJSON, Shape or any
other format. Another way is to provide a data access service, i.e., a set of operations,
accessible through an Application Programming Interface (API) that supports selective
download of the data, data transformations or even manipulation of the data source.
Commonly used APIs are the OGC Web Feature Service interface (OGC WFS) and the
OGC API Features interface.

Fig. 1 Access to Feature Data via datasets and services

2.2 Advantages of accessing data with OGC Web Services

Using OGC Web services such as Web Feature Service (WFS) and OGC API features
for data exchange offers several advantages over simply transferring prepackaged data
files.

● Higher level of automation
OGC Feature Services adhere to established standards that support automated
machine-to-machine interaction. This can be used to create software such as
QGIS and ArcGIS that largely hide the technical complexity of service
interactions and allow users to work with these data sources in a plug an play
manner. Furthermore, the data sources can be integrated into fully automated
processing chains with complex read and write transactions.

● Selective data access
Each time the FeatureService is accessed, the server delivers the data as
requested. Users can retrieve specific subsets of data filtered by spatial,
temporal, or attribute properties.

4/24

● Efficient delivery of various data products
Usually, the response to a data request is created on-the-fly according to the
request parameters. This allows the data to be provided in different spatial
reference systems, encodings, and even variations of the data model. In the case
of file download, all variants would have to be offered as separate files.

● Better support of dynamic data
By using Feature Services, you always access the current state of the database
as maintained by the provider. Especially for highly dynamic data that needs to
be made available in near real-time, using web services is usually more efficient
than offering files for download.

● Data manipulation
Feature Services can not only be used to retrieve data but to manipulate the data
source as well. Transactional feature services support insert, update and delete
transactions on the database so that remote systems can be used to populate
and maintain the data source.

2.3 The OGC-API series of interface specifications

So, what is the difference between the older OGC WFS and the newer OGC API
Features interface?

The service-oriented architecture of spatial data infrastructures is based on a set of
OGC/ISO standards that have been developed since the late 1990s. The OGC WFS
belongs to the series of classic OGC Web Services, such as the Web Map Service
(WMS), the Web Coverage Service (WCS) or the Catalog Service for the Web (CSW).
These services typically use SOAP and http to invoke server side operations such as
GetCapabilities, DescribeFeatureType, and GetFeature. These remote procedure calls
(RPC) results in response messages with the requested data as payload. This type of
OGC interfaces has become widely established over the last 20 years. Today, it is
possible in almost every GIS to connect to data directly via WMS and WFS interfaces.
However, the interface is complex and not easy to implement.

In contrast to the RPC style of classic OGC web services implementations, the newer
OGC API specifications implement the more lightweight RESTful style for web services.
One of the key characteristics of RESTful webservices is that http is used as an
application protocol, i.e. the semantics of the http methods such as GET, PUT, POST
and DELETE are being used to interact with the server side resources rather than just
transferring remote procedure calls. Furthermore, the OGC API specifications follow
additional recommendations of the World Wide Web consortium (W3C) that have been

5/24

published as Spatial Data on the Web Best Practices. For example: “Make your spatial
data indexable by search engines” which refers to providing an HTML landing page and
crawlable links to metadata and content.

2.4 OGC-API Features interface

OGC API Features is a multi-part interface specification from the Open Geospatial
Consortium designed to support the creation, manipulation, and querying of feature data
on the web. It specifies requirements and recommendations for RESTful APIs that
provide a standardized way to share feature data.

Any service that implements the OGC API Features interface provides you with a
standardized set of resources that can typically be accessed in various encodings such
as HTML, XML, or JSON:

● ../
The Landing Page of the service instance is a starting point for exploring the
capabilities and data offerings of the service. It contains general information on
the service offering, links to the API definition and to the data itself, i.e. the
feature collections and feature data.

● ../conformance
Starting from the landing page, this path provides access to a declaration of the
conformance classes that are supported by the service instance. Each
conformance class stands for a set of capabilities described in the OGC -Specs,
not all of them are mandatory. This information is important so that systems that
want to access the service can easily adjust to its capabilities.

● ../api
As said, the landing page must provide a link to the API definition, which provides
you with detailed metadata on the capabilities of the service instance such as
supported paths and data types. As an option, the service definition may be
provided as a sub-resource of the landing page at the path /API. If the service
supports the OpenAPI requirements class “oas30” the service definition conforms
to the OpenAPI specifications in the version 3.0 (https://www.openapis.org/). But
the service definition could be provided in any other format as well, e.g. as an
OWS Common capabilities document or as a WSDL document.
The API definition is needed by developers and development tools to support the
implementation of servers and clients. Furthermore it enables standard software
such as QGIS and ArcGIS to connect to the server in a plug-and-play manner.

● ../collections
The path /collections provides access to the list of feature collections and to the

6/24

https://www.w3.org/TR/2017/NOTE-sdw-bp-20170928/
https://www.openapis.org/

metadata of each feature collection such as ID, title, description, spatial and
temporal extent, schema, and license. Each of the collection provides also links
to the items of the feature collection, i.e. to the feature data itself.

● ../collections/{collectionID}
Each collection and all of its metadata must be accessible at the path
/collections/{collectionID} as well. I.e., this path provides you with a landing page
of a certain feature collection.

● ../collections/{collectionID}/items
The /items path is the access point to all feature data. The server responds to a
GET request at this endpoint by returning a set of feature data. Paging
mechanisms are used to limit the amount of data returned in a single request.
Query parameters can be used to filter the result set based on spatial and
temporal extent or by other feature properties.

● ../collections/{collectionID}/items/{itemID}
The ../collections/{collectionID}/items/{itemID} path can be used to access the
data of any single feature in the dataset.

The OGC API Features specification does not prescribe any particular encoding for the
data provided by a service instance. Currently, the standard specifies four conformance
classes: HTML, GeoJSON, GML Simple Features Level 0, and Level 1. I.e., the service
instance can implement and declare to conform with some of these conformance
classes. In particular, it is recommended that HTML and GeoJSON be supported
because they are commonly used to deliver geospatial data on the Web. HTML is
important for making geospatial data crawlable and indexable by search engines and for
providing easy access to content for human users. GeoJSON is easy to understand and
well supported by tools and software libraries.

2.5 Accessing Geospatial Data with OGC API Features

Well, first of all you need to find an instance of such a service to access it. You can use
the geoportals of existing SDIs like the Infrastructure for Spatial Information in Europe
(INSPIRE), the German national SDI (GDI-DE) or the SDI North Rhine-Westphalia
(GDI-NW) to search for datasets that can be accessed via the OGC API Features
interface. You will notice that most of the feature services that are offered today still
implement the classic OGC WFS interface. However, this will change in the near future
and it is expected that OG API features will replace the WFS in the coming years.

7/24

Let's assume you have searched for and found a dataset on building footprints and want
to access the data. Just use the browser to access the service landing page and browse
the service instance paths to view the descriptions and access the collections and the
data itself. That is, at this stage, all you need is the browser.

Now, what if you want to integrate the data into your GIS to use it for data analysis and
visualization in combination with other resources? Simply use the standard functionality
of your GIS software to connect to this type of service by specifying the URL of the
landing page. The GIS software will be able to interact with the service based on the
interface specification and metadata offered by the service itself (service type,
conformance statements, API definition, list of collections, schemas, encodings, etc.).
I.e. you can work directly with the data source, in a similar way as with data sources on
your local computer.

In case you are a software developer and want to integrate the data source into your
own software solutions, there are many libraries available that support connecting to and
interacting with an OGC API feature web service based on the http protocol and the
OGC interface specification.

In the next section of our tutorial, we will deepen our freshly acquired knowledge of
"OGC API Features" by experiencing the practical use of this type of feature services.

3. Practical exercises

3.1 Use cases and technical setting

In our example, we will demonstrate how to use data on nature reserves via an OGC API
Features Service. We will focus on the following use cases:

- Accessing the OGC API Features Web Service from a Browser
- Accessing the OGC API Features Web Service with QGIS
- Accessing the OGC API Features Web Service with Python

We’ll use two datasets on protected sites in Germany, which are reusable under the
terms of the Data License Germany Attribution 2.0: https://www.govdata.de/dl-de/by-2-0.

a) NSG - dataset on nature reserves (Naturschutzgebiete),
provided by the Lower Saxony State Agency for Water Management, Coastal
and Nature Conservation (NLWKN, www.nlwkn.niedersachsen.de), Reference:
https://registry.gdi-de.org/id/de.ni.mu.nlwkn.csw/EE85FE8F-BD05-4A6D-813B-6
ABC4514B18B

8/24

https://www.govdata.de/dl-de/by-2-0
http://www.nlwkn.niedersachsen.de/
https://registry.gdi-de.org/id/de.ni.mu.nlwkn.csw/EE85FE8F-BD05-4A6D-813B-6ABC4514B18B
https://registry.gdi-de.org/id/de.ni.mu.nlwkn.csw/EE85FE8F-BD05-4A6D-813B-6ABC4514B18B
https://registry.gdi-de.org/id/de.ni.mu.nlwkn.csw/EE85FE8F-BD05-4A6D-813B-6ABC4514B18B

b) Biosphere Reserves (Biosphärenreservate),
provided by the Bavarian State Office for the Environment (LFU,
www.lfu.bayern.de), Reference:
https://registry.gdi-de.org/id/de.by/DEBY_4CD25ABA-4ED4-43C0-9A7A-F30D79
20846F

Fig. 2: Technical components and interfaces used in the practical exercise

Figure 2 shows the technical components and interfaces that we will use in our exercise.
The protected sites data is being served by a PyGeoAPI server (https://pygeoapi.io/) that
provides access to the data via the OGC API Features interface. We use a Browser and
QGIS for the first two use cases. For demonstrating how to access the API from a
Python script we’ll use a Python notebook that runs on a Jupyter server
(https://jupyter.org/).

Before we can use these components we have to install the data and the software on
our local computer.

3.2 Installing software and data

3.2.1 Check and update QGIS installation

Please make sure that you have a current version of QGIS (version 3.32 or
higher) installed on your computer. If not, please visit the QGIS project website
https://www.qgis.org and download and install the latest version of QGIS.

9/24

http://www.lfu.bayern.de/
http://www.lfu.bayern.de
https://registry.gdi-de.org/id/de.by/DEBY_4CD25ABA-4ED4-43C0-9A7A-F30D7920846F
https://registry.gdi-de.org/id/de.by/DEBY_4CD25ABA-4ED4-43C0-9A7A-F30D7920846F
https://registry.gdi-de.org/id/de.by/DEBY_4CD25ABA-4ED4-43C0-9A7A-F30D7920846F
https://pygeoapi.io/
https://jupyter.org/
https://www.qgis.org

3.2.2 Download data and code from the tutorial’s GitHub repository

We’ve prepared the NSG data as well as some Python code and docker configuration
files in the GitHub repository of this tutorial:
https://github.com/oer4sdi/OER-DataAccessVia-OGC-API-Features

For downloading the relevant content from the GitHub repository please use one of the
following options:

a) If you are experienced in using GIT just open a terminal or command prompt,
navigate to the directory you want to use as a WorkingDirectory for this tutorial,
and clone the repository with the following command:
git clone https://github.com/oer4sdi/OER-DataAccessVia-OGC-API-Features.git

b) Otherwise go to the GitHub repository, locate the “code” button and select
“Download ZIP” to download the zip archive of the repository. Unzip the
repository to the location that you want to use as a WorkingDirectory for this
tutorial.

3.2.3 Installing the Docker Environment

As to provide a safe runtime environment for our PyGeoAPI and Jupyter servers
with all the software and data in place we will use pre-configured docker images
that can be installed and executed as docker containers in the docker
environment on your local computer. Don’t worry if you’re not already familiar
with Docker, we’ll lead you through the installation process step by step.

10/24

https://github.com/oer4sdi/OER-DataAccessVia-OGC-API-Features
https://github.com/oer4sdi/OER-DataAccessVia-OGC-API-Features.git

Fig. 3: Docker configuration on your local computer

In our Docker Environment, we will use two docker containers:

a) PyGeoApi container

This container will be used to run the PyGeoAPI Server that provides access to
the NSG data using the OGC API Features interface.

The container uses the latest version of the GeoPython PyGeoAPI Docker
image. The resource section of the local.config file refers to the data to be
published via the OGC API features interface. It overwrites the default
configuration file used by the PyGeoAPI Docker image. The data folder
containing the NSG data is also loaded into the Docker environment.

b) Python Jupyter Notebook container

This container will be used to run the Jupyter Server that provides the
environment for interpreting our Python Notebook. The server and the Python
Notebook can then be accessed with a standard browser.

We used a minimal Python docker image that we extended by some libraries for
data management and data visualization. These dependencies are defined in the
requirements.txt file that is used in the docker file which itself is being used to
build the Docker image. A volume reference for an app folder contains the python
notebook that you will use to access and visualize the NSG data.

Now let’s set up the Docker Environment with the docker images and docker containers
step by step:

1) Download, install and start up Docker Desktop

Visit the Docker website and download the Docker Desktop installer for your
operating system. Run the installer which will guide you through the installation
process. Once the installation is complete, please start up the Docker Desktop
application.

2) Compose and build the docker environment

Open a command window (terminal) and move to the workingDirectory that
contains the unzipped download of the tutorial’s GutHub Repository (see section
3.2.2).

Type docker-compose up --build to build and start the docker environment.

11/24

After successfully building and launching the docker containers the command window
should look like this:

Fig. 04: Docker Compose Logs

Please pay special attention to the logs related to the jupyter_container with information
about the URL that can be used to access the Jupyter server:

“http://127.0.0.1:8888/tree?token=......”

The URL contains a token that the Jupyter server requires as a credential to allow
access. To access the Jupyter server, you must copy and paste the URL into the
browser window.

The token that is provided with the URL is generated dynamically each time you start the
Jupyter server. That is, as soon as you restart the server, you must check the
jupyter_container logs to retrieve the URL again with the new token.

The following video briefly demonstrates how to set up the docker environment and how
to check if all components are up and running properly.

Video (YouTube): Installing the Docker Environment

12/24

https://youtu.be/pDLjFwSbN2U

3.3 Using the web browser to interact with the OGC-API
Features service

In this first exercise, we will explore how to access the OGC API Features Service
instance with NSG data using just a standard browser. You will notice that the service
provides us with a user-friendly HTML interface, making it simple to navigate through the
available feature data.

Let us follow a step by step process to understand how it works.

1. Once the docker containers are up and running, the PyGeoAPI service instance
will be available on your local system. Use the URL http://localhost:5000/ in your
browser to access the landing page of the NSG service instance.

Fig. 05: OGC API Features NSG - Landing Page

This would be the place to provide a brief description of the data so that users
know what they can expect from this service. Then you can use the links to look
up more details on the services capabilities as well as to dive into the data.

2. Now move to the Collections resource by clicking “View the collections in this
service”. In the collections page you will see a list of the feature collections that
can be accessed via this feature service.

13/24

http://localhost:5000/

Fig. 06: OGC API Features NSG - Collections

3. Let's take a closer look at the NSG feature collection (Naturschutzgebiete /
Nature Reserves). The service offers an HTML representation which comes with
an interactive map that visualizes the spatial extent of the dataset.

Fig. 07: OGC API Features - Collection NSG

4. Use the “Browse through the items of NSG” option to browse through the
features in the collection and to visualize their Geometries.

14/24

You can use the interactive map to look up the features in their geographic
context. The table to the right lists the properties of all the features. This is
already much more informative than just looking at the raw data in a GML or
GeoJSON encoding. You can even inspect the location and spatial extent of
single nature reserves in detail.

Fig. 08: OGC API Features - Collection NSG, Items

5. Just below the "Browse" option on the NSG feature collection page, you will see
the "Queryables" option. Select "Display Queryables of NSG" to view the feature
properties and their data types that can be used to filter out features based on
their property values.

15/24

Fig. 09: OGC API Features - Collection NSG, Queryables
6. OK, so “NAME” is a queryable attribute. Let’s try to query all features that have

the name “Osteseel”. You can dos so by using the path to the items of the NSG
feature collection and add the query “NAME=Ostesee”:

http://localhost:5000/collections/NSG/items?NAME=Ostesee

The result should look like this:

16/24

Fig. 10: OGC API Features - Collection NSG, Querying by property values

What we see is the HTML representation of the resource: NSG feature
“Osteseel”.

7. Now let's look at the JSON representation of the same feature. Just click on the
“json” option in the HTML document or add “f=json” as a second query parameter
to the URL. The result should look like this:

Fig. 11: OGC API Features - Collection NSG, selected Item in JSON encoding

What we can take from this exercise is that the OGC API interfaces support direct
interaction with human users, which greatly improves the user experience. Users can
effortlessly browse and retrieve geospatial data without complex queries or technical
knowledge.

The following video gives a short live demo of the described workflow.
Video (Youtube): Browser Access to Feature Data via the OGC API Features Interface

17/24

https://youtu.be/Otj3SYnpwwc

3.4 Using QGIS to access feature data via the OGC API
Features interface

Now we will explore how to access and visualize the NSG data from our OGC-API
feature service with QGIS. We will again use the service instance that we set up with
PyGeoAPI on our local machine.

1. Firstly, we need to copy the url of the OGC API service which is accessible from
the browser. It is http://localhost:5000/ .

2. Next, we Launch QGIS and select the "Add Layer" button in the toolbar, or go to
"Layer" > "Add Layer" > "Add WFS / OGC API Features Layer".

Fig. 12: QGIS - Add Layer - OGC API Features

3. In the dialog box, select "New" and enter the Name and URL of our NSG OGC
API Features service.Type in the URL of the landing page of our service
instance, which is http://localhost:5000/ and select the version of the feature
service “OGC API Features”. In our case we limit the max. number of features to
250 since we just want to look up a sample of the dataset.

18/24

Fig. 13: QGIS - Connecting to the NSG OGC API Features service

4. Click on "Connect" to establish a connection to the service. Once connected, the
available layers from the OGC Feature service will be displayed.

Fig. 14: QGIS - Selecting the NSG Feature Collection

5. Add the NSG Feature Collection as a new layer to your QGIS project.

19/24

Fig. 15: Feature Collection added as a layer to the QGIS project

6. Now you can work with the layer as with any local resource, change styling, build
subsets and use the data for data analysis.

Fig. 16: Analyzing the OGC API based NSG Layer

The following video gives a short live demo of the described workflow.
Video (Youtube): QGIS Access to Feature Data via the OGC API Features Interface

20/24

https://youtu.be/PF8DEZRiKbE

3.5 Using Python to interact with the OGC-API Features
service

In this section we will demonstrate how to use the Python scripting language for
accessing the NSG data from our OGC API Feature service. You will learn how to
interact with the service based on request and response messages that will be sent back
and forth. This can be used to automate any communication workflow with the server
which is important for building custom software applications.

We will use a Python Jupyter Notebook which is an executable document that contains
text and code cells. You can go through the document and run the code step by step
while the output of each step is displayed in the document. You can alter the code and
re-run the document to explore the effects. A nice way of learning-by-doing..

After conducting the workflow of section 3.2 the Jupyter server and the notebook are
already up-and-running. For accessing the server use the URL with the valid token that
you can take from the logs of the juyter_container in the command window as explained
in section 3.2.3.

Alternatively you can access the server via http://localhost:8888 from your browser. You
will be asked for a valid token which is the one that you find in the logs of the
jupyter_container as explained before.

Please start the notebook: “access_and_visualize_feature_data_NSG.jpynb”

Fig. 17: Accessing the Python Notebook of this exercise

21/24

http://localhost:8888

Now you should see the top of the notebook document that consists of cells that contain
either markdown, code or the raw output of executed code.

Fig. 18: Start working with the Jupyter Notebook

Start executing all cells one by one, by clicking the Play button, beginning with the
topmost cell. While markdown cells will just be skipped, the code in the code cells will
be executed which may take some seconds. So please wait for the result before you
continue executing the next cells.

The Notebook will lead you through the following workflow:
- connecting to the OGC API Features service
- listing the feature collections that are offered by the service
- accessing the landing landing page of the NSG feature collection
- selecting feature data by their spatial extent
- creating buffers for selected features
- visualizing the feature data in an interactive map

The following video gives a short live demo of this workflow.

The following video gives a short live demo of the described workflow.
Video (Youtube): Python Access to Feature Data via the OGC API Features Interface

Now you can play around with the code to better understand the interactions and trying
to implement changes following your own ideas.

22/24

https://youtu.be/tSnyMuPP32M

For example you could try to query features by attributes and create your own map that
presents the selected features in a certain symbolization. Or you could access the
feature collection with biosphere reserves and explore that data source.

4. Discussion and Wrap up
In this tutorial, we learned how to access data provided via the OGC API Features
interface.

Our NSG data service supports the Conformance Class HTML, which means that much
of the content is also provided as HTML content. This offers the awesome opportunity to
make the content accessible in a very user-friendly way, without requiring special
software to use it. In addition, the service can now be indexed by search engines, so you
can also search for data using Google and Bing and come across the services directly.
Give it a try (e.g., search for "Gebäudedaten NRW, OGC API features").

So far, there are still very few operational service instances, but this will change
drastically in the near future.

Furthermore, we have seen that the same service can also be used via standard
software such as QGIS or via programming languages such as Python.For
machine-to-machine communication, these systems do not use HTML but the JSON or
GeoJSON encodings that are offered by the service as an alternative for all available
resources.

Now you can use the server on your local computer to play around with the service from
the browser, QGIS and Python. Though we did not focus on how to set up a service
instance you might even look up the installation in its details and learn from it.

The following resources may help you to further dive into the topic and to deepen your
understanding:

- [1] Github repository of this tutorial:
https://github.com/oer4sdi/OER-DataAccessVia-OGC-API-Features

- [2] OGC Specification of the OGC API Features interface:
https://ogcapi.ogc.org/features/

- [3] An Introduction to OGC API - Features — OGC e-Learning 2.0.0
documentation:
http://opengeospatial.github.io/e-learning/ogcapi-features/text/basic-main.html

- [4] PyGeoAPI documentation
https://docs.pygeoapi.io/en/stable/

23/24

https://github.com/oer4sdi/OER-DataAccessVia-OGC-API-Features
https://ogcapi.ogc.org/features/
http://opengeospatial.github.io/e-learning/ogcapi-features/text/basic-main.html
https://docs.pygeoapi.io/en/stable/

- [5] Documentation on the OWSLIB library that you can use with Python to work
with OGC Web Services
https://owslib.readthedocs.io/en/latest/

If you face any problems with this tutorial or if you want to contribute your ideas on how
to improve the material you are invited to add issues to our GitHub repository
(https://github.com/oer4sdi/OER-DataAccessVia-OGC-API-Features).

24/24

https://owslib.readthedocs.io/en/latest/
https://github.com/oer4sdi/OER-DataAccessVia-OGC-API-Features

