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 An Experimental Investigation of the Seller Incentives in
 the EPA's Emission Trading Auction

 By TIMOTHY N. CASON*

 The Clean Air Act requires the EPA to conduct annual auctions of emission
 allowances. Under the discriminative auction rules, sellers with the lowest asking
 prices receive the highest bids. This paper studies an inverted version of this
 auction in which buyers face the same incentives as sellers in the EPA auction.
 Consistent with theoretical predictions, buyers bid above their valuation, auction
 outcomes are inefficient, and increasing the number of buyers increases bids.
 Buyers facing human opponents compete more aggressively than the risk-neutral
 prediction, but bids do not differ systematically from this prediction when buyers
 face computerized Nash "robots." (JEL D44, L51, Q25)

 The Clean Air Act Amendments of 1990
 ("the Act') created tradable emission al-
 lowances to control nationwide sulfur diox-
 ide pollution. In theory (W. David
 Montgomery, 1972), allowance trading pro-
 vides flexibility in achieving air quality ob-
 jectives, thereby lowering the total cost of
 emission reductions. To ensure the avail-
 ability of the emission allowances and to
 provide clear price signals to the evolving
 allowance market, Congress instructed the
 U.S. Environmental Protection Agency
 (EPA) to conduct annual sealed-bid/
 sealed-offer auctions. Unfortunately, the Act
 states that "allowances shall be sold on the
 basis of bid price, starting with the highest-
 priced bid and continuing until all allow-
 ances for sale at such auction have been
 allocated" (Clean Air Act Amendments of
 1990 [Public Law 101-549], Sec. 416(dX2);
 emphasis added). The EPA interprets this
 language of the Act to require a discrimina-

 tive auction with a unique feature: all sell-
 ers in this market-including private firms
 -receive the bid price of a specific buyer.
 Sellers with the lowest asking prices receive
 the highest bids. This paper reports ten
 experimental sessions that demonstrate the
 poor performance properties of this new
 trading institution.

 An earlier paper (Cason, 1993) models
 this institution as a Bayesian-Nash game of
 incomplete information to study its incen-
 tive properties. Although the EPA "does
 not believe that a systematic reduction in
 minimum [asking] prices will occur" (Federal
 Register, 17 December 1991, p. 65596) as
 a result of the low-offer-receives-high-bid
 rules, the model demonstrates that these
 rules can create a strong incentive for sell-
 ers to misrepresent and underreveal their
 true costs of emission control. The misrep-
 resentation incentive arises because lower
 asking prices increase the probability that a
 seller trades with high-bidding buyers;
 therefore, lower asking prices only indi-
 rectly reduce the expected price received.
 Asking prices that are below the true cost of
 emission control, however, are risky because
 they may cause sellers to trade at a loss.
 This risk limits the amount of profitable
 misrepresentation. In the symmetric equi-
 librium with differentiable offer strategies,
 the benefits outweigh the risks of misrepre-
 sentation so that on balance risk-neutral

 *Department of Economics, University of Southern
 California, Los Angeles, CA 90089-0253. Financial sup-
 port was provided by the Randolph Haynes and Dora
 Haynes Foundation. James Cox, Dan Levin, partici-
 pants at the Fall 1992 Economic Science Association
 and Winter 1993 American Economic Association
 meetings, and especially an anonymous referee pro-
 vided helpful comments on earlier drafts. I retain the
 responsibility for any remaining errors. Zagros Madjd-
 Sadjadi provided very capable research assistance.
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 906 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 1995

 sellers have the incentive to offer units at
 prices substantially below their cost of emis-
 sion control. Increasing the number of
 sellers does not eliminate this misrepresen-
 tation, and misrepresentation can intensify
 with increased seller competition if the
 number of buyers remains fixed. Therefore,
 the EPA's rules have the potential to gener-
 ate significantly biased price signals and re-
 duce the efficiency of the sulfur dioxide
 allowance auction.

 The experiment reported here supports
 the main comparative-static implications of
 the Nash model but rejects the precise risk-
 neutral equilibrium. The experiment imple-
 ments a one-sided version of the auction to
 focus on the seller incentives and to control
 for the strategic behavior of buyers.1 One
 unit is auctioned each period. Furthermore,
 the experiment inverts the institution so that
 a set of buyers faces incentives that are
 strategically equivalent to those facing sell-
 ers in the EPA auction.2 In this simplified
 environment, the high-bidding buyer wins
 the auction and pays an asking price (not
 her bid price) randomly drawn by nature if
 her bid price exceeds the asking price. The
 results are consistent with the main theoret-
 ical predictions: Buyers bid above their true
 valuation for the object, auction outcomes
 are inefficient, and an increase in the num-
 ber of buyers increases bids. However, buy-
 ers facing other human opponents compete
 more aggressively than predicted by the
 risk-neutral Bayesian-Nash model. Risk
 aversion does not explain this result. Bids
 do not differ systematically from the risk-
 neutral Nash equilibrium in a treatment in
 which buyers face computerized Nash
 " robots," however, so the overbidding
 against human opponents may be due to
 strategic responses to a subset of aggressive,
 high-bidding subjects.

 The remainder of the paper is organized
 as follows. Section I briefly summarizes the
 rules of the EPA auction institution. Sec-
 tion II presents a simple one-sided version
 of the Bayesian-Nash model of this auction
 in which buyers' bids determine their proba-
 bility of winning and the range of possible
 bid prices they pay. The end of Section II
 contains the experimental hypotheses. Sec-
 tion. III summarizes the experimental de-
 sign, and Section IV contains the results.
 Conclusions are presented in Section V.
 Experiment instructions are available from
 the author upon request.

 I. A Brief Summary of the EPA Auction

 The centerpiece of the acid-rain control
 program in the Clean Air Act Amendments
 of 1990 is a system of tradable emission
 allowances. An allowance authorizes the
 emission of up to one ton of sulfur dioxide,
 and the total annual emissions of each "af-
 fected" unit (most units in operation prior
 to passage of the Act) must be less than or
 equal to the number of allowances held for
 that unit. Allowances may be transferred to
 and from any affected unit or person. Con-
 sequently, each unit may meet its sulfur
 dioxide limitation in the most efficient
 means possible, either by choosing the most
 cost-effective emission control technology or
 buying emission allowances from units with
 lower emission control costs.

 To maintain a cap on total emissions, new
 units (most units beginning operation after
 passage of the Act) must obtain allowances
 from existing allowance-holders or through
 the EPA auctions and sales programs. EPA
 calls once-a-year auctions no later than
 March 31 of each year. EPA holds two
 separate auctions at this annual call: a spot
 auction for allowances allocated for the cur-
 rent year and an advance auction for al-
 lowances effective in seven years. The Act
 allows any person holding allowances to sell
 them in the auctions held by the EPA but
 requires that the (reserve) allowances in
 EPA's auction subaccount be sold before
 any private offerings. The number of EPA
 subaccount allowances in each of the two
 annual auctions varies from 150,000 to
 250,000 between 1993 and 1999, but is set at

 'James C. Cox et al. (1984) explore the theoretical
 and behavioral properties of the multiple-unit discrimi-
 native auction.

 2Selling units to buyer subjects seems more natural
 to explain in instructions and allows the results to be
 directly compared to other experimental auction re-
 sults with different pricing rules. It also simplifies the
 explanation of the (Nash) robot strategies used in the
 "robot-opponent" treatment.

This content downloaded from 
�������������77.241.232.13 on Sat, 17 Aug 2024 09:30:30 UTC������������� 

All use subject to https://about.jstor.org/terms
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 200,000 after 1999 (i.e., in "Phase II'). This
 amounts to 2.24 percent of the total al-
 lowances allocated each year.

 The EPA auction is a new variant of the
 "call-market" institution used on many or-
 ganized exchanges. In the call-market insti-
 tution, potential buyers submit (sealed) bids
 specifying their maximum willingness to pay
 for the commodity, and potential sellers
 submit (sealed) offers (or "asks') indicating
 the minimum they are willing to accept in
 exchange for the commodity. (One can think
 of these bids and asks as "limit orders,"
 which may specify different price limits for
 different units. The EPA auction subac-
 count allowances are sold with a minimum
 asking price of zero.) The market is "called,"
 and trades are executed at a known, prean-
 nounced time using a previously specified
 rule for determining the price of each trade.
 Although these auctions are two-
 sided-with both bids to buy and offers to
 sell-the EPA interprets the language of
 the Act "to require that allowances be sold
 to successful bidders at the price of their
 respective bids (also referred to as a dis-
 criminative approach)" (Federal Register, 23
 May 1991, p. 23746). The EPA determines
 the prices as follows (Federal Register, 23
 May 1991, p. 23746):3

 All bids to the auctions will be ranked
 from highest to lowest on the basis of
 bid price. EPA will allocate and sell
 all the allowances in the auction sub-
 account on the basis of this ranking:
 when all such allowances are sold,
 EPA will match contributed al-
 lowances offered for sale with any
 remaining bids. Specifically, EPA pro-
 poses to match the offer to sell that
 stipulates the lowest minimum price
 with the highest remaining bid. This
 matching process will continue in as-

 cending order of specified minimum
 price until all bids are awarded or
 allowances are consumed, or until
 EPA can no longer match bids with
 allowances because sellers have set
 their minimum price higher than any
 remaining bids.

 Allowances sold in this matching scheme
 receive the bid price of a specific buyer, and
 lower asking prices increase trading priority
 and can thus lead to higher received prices.
 The EPA is aware that "such a system may
 provide incentives for holders of allowances
 to specify lower minimum prices for al-
 lowances than they would be willing to ac-
 cept in order to be matched to higher bids"
 (Federal Register, 23 May 1991, p. 23746).
 It is worth noting that more standard uni-
 form-price call auctions (such as those
 studied by Mark A. Satterthwaite and Steven
 R. Williams [1989] and Aldo Rustichini et al.
 [1994]) have much better theoretical incen-
 tive properties because only the marginal
 traders affect price.

 II. A Theoretical Bayesian-Nash Model

 This section presents a simplified
 Bayesian-Nash model of the auction that
 captures the salient strategic incentives in-
 duced by the EPA's low-offer-receives-high-
 bid rules. Buyers compete to buy a single
 unit, and the single nonstrategic seller (the
 experimenter) submits an offer price from a
 known distribution. The highest bidder pays
 the offer price, not her bid. Thus, this model
 and the experiment examine the (strategi-
 cally equivalent) inverse of the problem fac-
 ing sellers in the EPA auction. For a more
 general multiple-unit characterization ex-
 pressed in seller terminology, see Cason
 (1993). The framework and assumptions
 employed here are similar to the existing
 auction literature based on the seminal in-
 sight of William Vickrey (1961) (see e.g.,
 Milton Harris and Artur Raviv, 1981; John
 G. Riley and William F. Samuelson, 1981;
 Cox et al., 1982a,b, 1984, 1988).

 One unit is offered at an asking price of
 c, where c is drawn independently (each
 period) from a known probability distribu-
 tion function ?( *) with density 4(*) whose

 3The final rules published in the Federal Register on
 17 December 1991 do not modify this proposal. Pro-
 ceeds of sales from the auction subaccount are dis-
 tributed to units that had allowances withheld from
 their initial allocation, so this is a revenue-neutral
 auction.
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 support is the interval [0, c]. Each of N > 1
 buyers submits a bid to buy this single unit,
 and the buyer with the highest bid may win
 the unit and pay the asking price c.' The
 random asking price is unknown when the
 buyers enter their bids.5 Rank the N bids in
 decreasing order, b1 ? b2 ? ... ? bN. The
 purpose of the bids is only to rank the
 buyers. The high-bidding buyer wins the
 unit and pays the asking price c only if her
 bid b1 ? c. Note that the winning buyer
 acquires a lottery: should she win, she will
 pay an asking price that is a random vari-
 able distributed on the interval [0, b1 I. Let vi
 denote the valuation of the unit for buyer i
 (this allowance valuation corresponds to the
 marginal emission-compliance cost of buyer
 i), where i =1,..., N. Assume that each vi is
 drawn independently from a known proba-
 bility distribution function H(*) with den-
 sity h( ) whose support is the interval [0, v3].
 If buyer i buys the unit at the price c, she
 gains the monetary surplus {vi - c}. If buyer
 i does not buy a unit, which can happen if
 either (a) any other buyer j 0 i bids bj > bi
 or (b) the asking price c is greater than bi,
 then her monetary gain is zero.

 Assume that buyer i expects each of her
 rivals to bid according to the bid function

 (1) bk=b(vk) Vk i

 which is nondecreasing with well-defined
 first and second derivatives on [0, v]. Differ-
 entiability requires that b = b(-v) < c-, where
 b is the maximum bid that is associated with
 the highest value draw.6 Let v(bk) denote

 the inverse of the bid function (1):

 (2) Vk=V(bk).

 The probability that bid bi is highest is the
 probability that N -1 rivals of buyer i bid
 less than bi. [This is simply the (N - 1)th
 order statistic from a sample of size N. In
 the symmetric equilibrium, all N - 1 rivals
 bid less than bi if all N -1 drawn values are
 less than vi.] Denote this probability
 G[v(b)], which is given by

 (3) G[v(b)] = [H(v(b))]N-1.

 Notice that the probability that the bid b1
 is greater than the cost draw c is 'I(bi).
 Finally, denote the expected utility of the
 bid bi conditional upon its being the highest
 and greater than c as U[bi1bi = max(bl,
 b2 ... bN) C< bi, vi], or simply U[biIwin].
 Normalize the utility function so that the
 utility from losing the auction is zero. With
 this notation, the overall expected utility of
 a bid bi is

 (4) EU(bi) = G[v(bj)]'D(bj)U[bjjwin] .

 The bid strategy is a function that maps
 buyer i's private value vi E [0, v] into the bid
 she submits bi E R, given her beliefs de-
 scribed above. I solve for the symmetric
 Bayesian-Nash equilibrium bid function
 bi= b(vi) by maximizing EU(bi) with re-
 spect to the bid bi, taking the behavior of
 the other N -1 buyers as given by bk =
 b(vk), k 0 i. The solution is a symmetric
 Nash equilibrium only if the optimum bi* =
 b(vi); that is, each buyer i's strategy
 bi = b(vi) is the best response strategy to
 N -1 buyers playing bk= b(vk). The first-

 order condition for a maximum EU'(bd)= 0
 implies the following nonlinear first-order
 differential equation for the inverse bid
 function:

 (5) v'(b )=

 G(v(bi))[U(bi Iwin)ck(bi) + F)(bi)U'(bi Iwin)]
 G'{.(v(bj))mDbj)U(bj win)

 4The theoretical derivation ignores the possibility of
 tied bids since they are zero-probability events when
 drawn from continuous probability density functions.
 In the experiment, ties were resolved by randomiza-
 tion.

 5The assumption of a random asking price is appro-
 priate in this context but is a deviation from the
 standard auction literature. If buyers knew the asking
 price (and they do not in the EPA auction), the trivial
 optimal bid strategy would be to bid + oc if the asking
 price is below emission-compliance cost, and to bid
 - oc otherwise.

 6 -
 If b > c, the derivation of the optimal bid function

 would be complicated by the possibility that a range of
 high value draws would map into the same optimal bid.
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 This differential equation and the initial
 condition v(O) = 0 characterize the symmet-
 ric Nash-equilibrium bid function.7

 Buyer values in the experiment are drawn
 from the uniform density h(v) = 1/ v, and
 the asking price c is drawn from the uni-
 form density +(c)- 1/7-. The former condi-
 tion simplifies the order statistic G[v(b)]
 since H(v) = v/ v, and the latter condition
 simplifies U[bilwin]. In particular, if all ri-
 vals bid according to the inverse bid func-
 tion v(b), then the probability that the bid
 bi is the highest bid is

 (6) G[v(b )] -[v(bi)]N1

 and the probability that the asking price
 draw c is less than bi is

 (7) ( bi) = bi /c.

 Now suppose that buyers are risk-neutral,
 so their objective is to maximize expected
 payoff. In this case simply write the utility
 of income u(y) as y. This implies that the
 expected utility conditional upon winning
 the auction is

 (8) EU(bi Iwin) = vi -b

 because the conditional expected value of
 the asking price is bi /2. (In other words,
 the expected price paid conditional on win-
 ning is one-half the bid.) Substituting these
 expressions into equation (5) and simplify-
 ing results in

 (9) v'(bi) = 2vb)b -vb)
 ( N-1 jbJ 2vu( b;)-bJ

 Using the initial condition v(O)=O, it is
 straightforward to verify that this differen-

 tial equation has the following linear solu-
 tion:

 N+1
 (10) v(bi) = bi 2N

 so the symmetric, risk-neutral Nash-equi-
 librium bid function is

 2N
 (11) b(v1)= v.

 Since 2N > N + 1, the optimal bid is
 above the buyer's value vi. For the N = 3
 and N = 6 cases of the experiment, the opti-
 mal bid is 50 percent and 71 percent higher
 than the value, respectively. In contrast, the
 equilibrium bid function in a standard first-
 price auction (where winning buyers pay
 their bids) implies that buyers bid below
 their values (Vickrey, 1961). (For the distri-
 bution functions considered here, the first-
 price risk-neutral bid function is bf(vi) =
 [(N - 1)/NIvi.) Moreover, when the num-
 ber of offered units is fixed at one, increas-
 ing N under these rules increases the
 amount of misrepresentation: As N -- ??, b(vi) -* 2vi. The bids converge to double
 the valuations because the expected price
 paid is always one-half the bid [see equation
 (8) above], and competition from increasing
 N forces expected profit to zero.8 The data
 analyses below use this "perfect-competi-
 tion"zero-profit bid function as a nonstrate-
 gic alternative model.

 In the symmetric Nash equilibrium, buy-
 ers bid above their valuations, so the win-
 ning buyer may regret winning ex post (i.e.,
 suffer losses) if the asking-price draw hap-
 pens to be high. (The EPA requires all bids
 and asks to be binding; a certified check for
 the total bid price must accompany all bids.)
 Ex post winner regret in this context arises
 from different strategic considerations
 than the well-known "winner's curse" in
 common-value auctions (see e.g., John Kagel
 and Dan Levin, 1986). In the common-value

 7It is straightforward to verify the second-order con-
 ditions in the uniform-distribution case considered in
 what follows.

 8With the first-price bid function bf(vi) above, it is
 easy to verify that increasing N leads to truthful value

 revelation; that is, bf(vi) -u vi as N -? oc.
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 FIGURE 1. SYMMETRIC NASH EQUILIBRIUM BID FUNCTIONS FOR N = 3 AND
 EXPERIMENT PARAMETERS

 auction, buyers must account for an adverse
 selection problem in estimating the true
 value of the item for sale. Buyers must
 discount their bids because, should they win,
 their signal is among the most optimistic
 and is therefore biased upward. The winner's
 curse therefore comes from judgmental fail-
 ures when updating posterior expected
 values, and if present may cause winning
 bidders systematically to lose money. In
 contrast, the ex post regret suffered at times
 in the current model is consistent with fully
 rational profit maximization. The bid maxi-
 mizes expected profit based on the distribu-
 tion of possible cost and value draws.
 Although this results in losses from some
 cost draws, buyers earn positive profits on
 average.

 Risk aversion explains many of the devia-
 tions from the risk-neutral Nash model in
 previous laboratory auction research. For
 example, in the first-price auction, risk aver-
 sion increases bids, lowers expected profit,
 and reduces value misrepresentation rela-
 tive to the risk-neutral equilibrium (see
 e.g., Harris and Raviv, 1981; Riley and
 Samuelson, 1981). In the EPA auction, I
 have not characterized the implications of
 risk aversion for general risk preferences.
 Nevertheless, all of the utility-function pa-
 rameterizations I have examined-includ-
 ing the commonly used constant absolute

 risk aversion (CARA) [u(y) = 1 - e -rYI and
 constant relative risk aversion (CRRA)
 [u(y) = yr*] utility models-indicate the
 same thing: risk aversion reduces bids, in-
 creases expected profit, and reduces value
 misrepresentation relative to the risk-
 neutral equilibrium. In both the EPA auc-
 tion and the first-price auction, buyers risk
 not winning the auction in conditions they
 would find profitable, which introduces up-
 ward pressure on bids relative to the risk-
 neutral case. However, the EPA auction has
 an additional downside risk: higher bids in-
 crease the probability and expected value of
 losses from paying more than the unit's
 value. This leads to lower bids than the
 risk-neutral prediction.9

 9The third-price auction studied in Kagel and Levin
 (1993) has similar strategic properties. With N buyers,
 uniform distributions, and risk-neutrality, this institu-
 tion's Nash-equilibrium bid function is

 b3(vi) = [(N- 1)/(N-2)]vi.

 As in the EPA auction, bids exceed values, and risk
 aversion reduces bids. Even with risk aversion, bids
 increase with increased N in the EPA auction. Unlike
 the EPA auction, however, increasing N in the third-
 price auction reduces bids and reduces value misrepre-
 sentation. Therefore, competition increases efficiency
 in the third-price auction but reduces efficiency in the
 EPA auction.
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 Figure 1 displays example bid functions
 for parameters of the experiments: values
 were drawn from [$0.00, $5.83] and asking
 prices were drawn from [$0.00, $9.99]. The
 figure presents the N = 3 symmetric equi-
 librium bid functions for the risk-neutral
 case (bi = 1.Svi) as well as bid functions for
 symmetric CRRA utility and symmetric
 CARA utility. (For the CRRA utility func-
 tion the Arrow-Pratt constant-relative-risk-
 aversion parameter is 1- r* = 0.5, and for
 the CARA utility function the Arrow-Pratt
 constant-absolute-risk-aversion parameter
 is r = 0.5.)1o Notice that the risk-averse
 bid functions are closer to the truthful-
 revelation bid = value line than the risk-
 neutral cases. The conclusion holds for all
 risk-aversion parameters, not just 0.5. Thus
 for CRRA or CARA utility, risk aversion
 does not explain bids above the risk-neutral
 bid function. This conclusion is likely to
 hold more generally, and CARA is probably
 a sufficient approximation given the small
 money stakes in the experiment.

 Finally, consider the expected profit im-
 plications of nonoptimal bidding. Define the
 expected loss function L(bi, bi) as the ex-
 pected loss from bidding bi when the opti-
 mal bid is b* (Daniel Friedman, 1992). If
 this loss function were symmetric, the pay-
 off consequences of suboptimal behavior
 would suggest that errors above and below
 the optimal bid b* are equally likely. It is
 straightforward to show that the loss func-
 tion in this environment is approximately
 symmetric for small deviations (i.e., bi +
 $0.50), but becomes asymmetric for larger
 deviations. For example, consider the risk-
 neutral equilibrium, a typical winning draw
 of $5.00 and bid deviations of + $1.00. For
 the N = 3 treatment, the expected loss is
 more than 40-percent greater for bV +1
 (bi = $8.50) than for b[* -1 (bi = $6.50). For
 the N =6 treatment, the expected loss is
 more than 140-percent greater for bV +1

 (bi = $9.57) than b* - 1 (bi = $7.57).
 Because of this loss-function asymmetry,

 payoff-metric considerations (Glenn W.
 Harrison, 1989) indicate that bid "errors"
 are more likely to be below the optimum
 bid b* because downward errors are less
 costly.

 The experiment evaluates three testable
 hypotheses provided by the main compara-
 tive statics of the Nash equilibrium model.

 Hypothesis 1: Winning bids are significantly
 higher for the experimental treatments with
 a greater number of bidders.

 Hypothesis 2: All submitted bids are signifi-
 cantly higher for the experimental treat-
 ments with a greater number of bidders.

 Hypothesis 3: Realized market trading effi-
 ciency is significantly lower for the experi-
 mental treatments with a greater number of
 bidders.

 The Nash model also provides precise,
 quantitative hypotheses for all bids and effi-
 ciency under the risk-neutrality assumption,
 but these are easily rejected so I do not
 define them formally here.

 The data analysis below considers a spe-
 cific alternative model to the symmetric
 Nash model. This nonstrategic alternative is
 a simple rule of thumb to bid two times the
 drawn valuation. Like the perfect-competi-
 tion (bid = value) alternative to the Nash
 model in the first-price auction, this alter-
 native model is an upper bound on the
 "competitiveness" of buyers. The Nash
 model allows positive expected profits, while
 the perfect-competition alternative requires
 zero expected profits. Subjects may adopt
 this rule of thumb if they focus on the
 expected value of the cost draw conditional
 on winning (which, recall, is one-half the
 bid), ignoring the strategic aspects of the
 auction. I refer to this aggressive competi-
 tion alternative as the double-value model."1
 Note that the double-value model implies
 that the number of competing buyers will
 have no impact on bidding behavior and

 10The risk-averse utility function examples are cal-
 culated numerically using the Runge-Kutta method of
 numerical approximation (see e.g., William H. Press
 et al., 1986 Ch. 15).

 11In the experiment, the maximum possible bid b =
 9.99 < 2vi for vi > 5.00. Therefore, for vi E [5.00, 5.83],
 the double-value model prediction is bi = 9.99.
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 TABLE 1-SUMMARY OF EXPERIMENTAL SESSIONS

 Number of buyers

 Session First 10 Middle 10 Last 10 Subject Number of buyers
 number periods periods periods expertise vs. robot opponents

 E3631 3 6 3 inexperienced 0
 E3632 3 6 3 inexperienced 3
 E6361 6 3 6 inexperienced 1
 E6362 6 3 6 inexperienced 3
 E3633x 3 6 3 experienced 2
 E3634x 3 6 3 experienced 1
 E6363x 6 3 6 experienced 1
 E6364x 6 3 6 experienced 2
 All robot 1 a a a inexperienced all 7
 All robot 2x a a a experienced all 6

 Notes: All sessions involved 30 auction periods in each human opponent session and
 45 auction periods in each robot opponent session; all values were drawn from the
 uniform distribution over [$0.00, $5.83], and all costs drawn from the uniform distribu-
 tion over [$0.00, $9.99].

 aVaried across subjects.

 efficiency. Support for Hypotheses 1-3
 therefore implies a rejection of the double-
 value model.

 III. Experimental Design and Procedures

 The experiment was conducted at the
 University of Southern California's Experi-
 mental Economics Laboratory, which con-
 tains 17 personal computers on a local-area
 network. Between six and nine subjects par-
 ticipated in each session, all recruited from
 undergraduate economics classes not taught
 by the experimenter. Subjects were ran-
 domly assigned to computers, and instruc-
 tions were read aloud by the experimenter
 while the subjects followed along on their
 own copies.'2 The subjects then continued
 at their own pace through two computer-
 ized examples that demonstrated the me-
 chanics of submitting bids and illustrated
 the auction rules. Two practice periods then
 followed with no monetary payoffs. For the
 "human-opponent" treatment, each session
 contained 30 periods with monetary payoffs,

 and this was common knowledge. Six of
 the subjects participated in the human-
 opponent treatment each session. The com-
 puters did the profit accounting for subjects,
 but subjects also filled out record sheets
 (which contained the pre-drawn values for
 the entire experiment) to verify the profit
 calculations. Sessions lasted an average of
 75 minutes, and total monetary payoffs
 ranged from $4.00 to $31.50, averaging a
 little more than $20 per subject.13

 The primary treatment variable was the
 number of buyers N, which varied systemat-
 ically between 3 and 6 within each experi-
 ment using an ABA design (10 periods each
 treatment). One or two practice periods
 without monetary payoffs separated the
 treatments. In the three-buyer auction peri-
 ods, each subject participated in one of two
 simultaneous auction markets, always com-
 peting against the same two buyers. Table 1
 summarizes the 10 sessions. All sessions
 drew seller valuations from the discrete uni-
 form distribution over [$0.00, $5.83] and
 drew asking prices from the discrete uni-
 form distribution over [$0.00, $9.99]. (These

 12The instructions explain how the conditional dis-
 tribution of the purchase price changes as the bid
 changes. The computer also presented this information
 after subjects entered (but before they confirmed) each
 bid.

 13 Salient rewards, defined as the total absolute
 change in account balance over the course of the
 experiment, averaged about $18.50 per subject.
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 upper endpoints were chosen because the
 product of 12/7 and 5.83 is 9.99, which is
 the maximum risk neutral bid b in the sym-
 metric Nash equilibrium when N = 6. For
 reasons described in the previous section,
 bids are expected to be less than or equal to
 the risk-neutral Nash equilibrium.) Half of
 the sessions used inexperienced subjects,
 and the other half employed these subjects
 in experienced sessions.'4

 As indicated in Table 1, most of the ses-
 sions included extra subjects who played
 against "robot" opponents. The robots
 played the risk-neutral Nash strategy of
 equation (11). These subjects served two
 purposes. First, they were available to re-
 place any bankrupt subject in the human-
 opponent sessions in order to maintain six
 total buyers.15 Fortunately, only one subject
 went bankrupt (in the next-to-last-period),
 so subjects experienced with robot oppo-
 nents earlier in the same session actually
 made only one bid (out of the 1,440
 "human-opponent" bids). Second, the
 robot-opponent treatment provides an addi-
 tional environment to study behavior and
 learning against stable, known, Nash strate-
 gies. Following James M. Walker et al.
 (1987), a special instruction supplement de-
 scribes the Nash strategies employed by the
 robot opponents. The subjects competing
 against robot opponents were able to com-
 plete each trading period more quickly than

 the human-opponent subjects since they did
 not have to wait for slower human
 decision-makers to make their bids; conse-
 quently, each robot-opponent treatment
 lasted for 45 periods with monetary payoffs.
 In all other respects the robot-opponent
 treatment was exactly the same as the
 human-opponent treatment. The final two
 sessions employed all robot opponents.16

 IV. Experimental Results

 I present results in five subsections.
 Section IV-A presents the overall market
 performance, including an analysis of the
 winning bids, profit, and trading efficiency.
 Section IV-B examines all bids pooled across
 all buyers, and Section IV-C considers
 individual bidding behavior. Section IV-D
 presents the behavior of buyers who faced
 Nash robot opponents, and Section IV-E
 derives best responses to the observed bid
 deviations from the risk-neutral Nash
 equilibrium.

 1 All five inexperienced sessions used a single set of
 value and cost draws, and all five experienced sessions
 used another set of value and cost draws. This proce-
 dure controls value and cost variation across replica-
 tions. The number of buyers in each auction varied
 systematically across sessions while the value and cost
 draws remained constant, so this procedure also allows
 an exact pairing of bids with the same valuation across
 the buyer-number treatments. This provides powerful
 statistical tests for Hypothesis 1.

 Subjects were declared bankrupt and excused from
 the experiment if their current account balance ever
 dropped below $5.00. This positive cutoff level ensured
 that when subjects bid they were able to cover their
 maximum possible loss. Subjects began with an initial
 account balance of $15.00. This relatively large starting
 balance was chosen because of frequent bankruptcies
 in the pilot experiment.

 16The final two all-robot opponent sessions differed
 slightly from the others in one way. Although all
 robot-opponent subjects completed a fixed number of
 periods (45), a referee raised the concern that because
 these subjects played at their own pace they could be
 trading off accuracy for the time required to complete
 the session. However, in the top eight sessions listed in
 Table 1, the robot-opponent subjects were explicitly
 told they were "backup" subjects and were required to
 wait for the human-opponent session to finish before
 being paid and excused. In order to create similar
 incentives for the all-robot-opponent sessions listed at
 the bottom of Table 1, subjects were informed that the
 experimenter would not pay and excuse them until a
 specific time. The inexperienced sessions with human
 opponents lasted between 82 and 106 minutes (with an
 average of 96 minutes), so in the inexperienced session
 all-robot 1 we told the subjects that they would not be
 paid until 80 minutes had elapsed. (Rushing to comple-
 tion was apparently not an incentive for most subjects,
 as the average completion time was 90 minutes for this
 group.) The experienced sessions with human oppo-
 nents lasted between 47 and 57 minutes (average = 52
 minutes), so in the experienced session all-robot 2x we
 did not pay subjects until 50 minutes had elapsed.
 Under these conditions the average completion time
 was 55 minutes.
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 TABLE 2-RISK-NEUTRAL NASH THEORETICAL AND OBSERVED WINNING BIDS
 (HUMAN OPPONENTS): MEANS AND VARIANCES

 Six-buyer treatment Three-buyer treatment

 (i) (ii (iii) (iv (v)
 Observed

 Theoretical Observed Theoretical Observed difference:
 Nash mean mean Nash mean mean mean (6-buyer) -

 Periods (variance) (variance) (variance) (variance) mean (3-buyer)

 Inexperienced:

 1-10 9.13 8.28 7.38 7.11 1.17t
 (0.58) (1.40) (2.22) (2.34)

 1-20 8.37 8.35 6.55 7.54 0.81t
 (3.64) (2.30) (3.57) (3.53)

 21-30 8.13 8.60 6.87 8.36 0.24
 (2.75) (2.64) (1.70) (2.62)

 1-10 and 21-30, 8.53 8.46 7.07 7.87 0.58
 pooled (2.03) (2.04) (1.89) (2.84)

 All 1-30, pooled 8.48 8.42 6.90 7.77 0.65*
 (2.40) (2.08) (2.41) (3.04)

 Experienced:
 1-10 9.26 9.04 7.32 8.57 0.47

 (0.54) (1.14) (2.03) (2.81)
 11-20 9.04 9.90 6.92 8.28 1.62*

 (0.77) (0.03) (1.66) (3.13)
 21-30 8.54 9.50 6.37 8.44 1.06

 (1.23) (0.63) (3.51) (5.26)

 1-10 and 21-30, 8.90 9.26 6.94 8.50 0.76
 pooled (0.96) (0.92) (2.73) (4.09)

 All 1-30, pooled 8.95 9.48 6.93 8.43 1.05**
 (0.87) (0.71) (2.29) (3.76)

 Notes: Statistical tests reported in column (v) are based on the random-effects model described in equation (12).
 tStatistically significant at the 10-percent level.
 *Statistically significant at the 5-percent level.

 **Statistically significant at the 1-percent level.

 A. Winning Bids, High Bids, and Market
 Performance

 Table 2 presents means and variances of
 the winning bids in each sequence of ten
 auctions for the human-opponent sessions,
 separated by experience level and buyer-
 number treatment. Columns (i) and (iii)
 contain the risk-neutral Nash-model mean
 winning-bid predictions (for the particular
 sequence of value draws), and columns (ii)
 and (iv) contain the observed mean winning
 bids. The mean winning bid is above the
 risk-neutral Nash prediction in nearly all
 three-buyer sequences (except the initial ten
 periods) and in about half of the six-buyer
 sequences. Column (v) presents the differ-
 ence in the mean six-buyer and mean
 three-buyer bids. Hypothesis 1 implies that

 this difference should be greater than 0. To
 test this hypothesis statistically it would be
 inappropriate to pool all bids and treat them
 as independent observations, because bids
 submitted by the same subject are noninde-
 pendent.

 I therefore test Hypothesis 1 with the
 following random-effects model estimated
 separately for inexperienced and experi-
 enced subjects:

 3 3

 (12) bit = E a3kD3k + E a6kD6k + Uit
 k=1 k=1

 where bit is buyer i's bid in period t, k = 1,
 2, and 3 represent the first, second, and
 third 10-period sequences (corresponding to
 the rows of Table 2), and the 3 and 6
 subscripts denote three-buyer and six-buyer
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 auctions. The D1k term is a dummy variable
 equal to 1 for a j-buyer auction in the kth
 10-period auction sequence, so the ordinary
 least-squares estimates aIjk of equation (12)
 correspond to the means reported in
 columns (ii) and (iv) of Table 2. However, to
 account for the dependent observations
 across subjects I estimate equation (12) us-
 ing the random-effects error specification
 uit =ri + Sit. The term ri reflects the ran-
 dom subject-specific effect. I employ two-
 step generalized least-squares estimation to
 obtain consistent and asymptotically effi-
 cient estimates of equation (12) (Cheng
 Hsiao, 1986 Ch. 3). For Hypothesis 1, I test
 the null hypothesis a3k = a6k (for k = 1, 2,
 and 3) against the alternative hypothesis
 a3k < a6k. (The pooled 20- and 30-period
 sequences indicated in the center and at the
 bottom of Table 2 employ analogous tests
 with different dummy variables.) Column (v)
 indicates that the data reject this null hy-
 pothesis of no buyer-number treatment ef-
 fect at relatively weak significance levels for
 about half of the 10-period auction se-
 quences; however, the data strongly reject
 this null when pooling across the 30 auc-
 tions of a session. I therefore conclude that
 the data support Hypothesis 1: increasing
 the number of buyers increases winning bids.

 Nevertheless, one can reject the precise
 bid predictions of the risk-neutral Nash
 model for the pooled data. What is surpris-
 ing is that, in all cases except for the inexpe-
 rienced six-buyer treatment, this model is
 rejected in the direction of more aggressive
 bidding; furthermore, bids appear to in-
 crease with experience.17 However, this test
 also rejects the double-value model in favor
 of less aggressive bidding in all cases except
 the experienced six-buyer treatment. At the
 end of the experienced sessions, high bids
 are about a dollar or more higher than the
 risk-neutral Nash-model prediction.

 Table 3 presents average profit and effi-
 ciency for the auction sequences. Profit fig-

 ures are average total profits across sessions
 (in dollars) for the indicated 10-, 20-, or
 30-period sequences. Columns (i) and (iv)
 indicate that, pooling over all 30 periods,
 the Nash model predicts that this institution
 will extract only 69-87 percent of potential
 gains from exchange (efficiency numbers are
 reported in parentheses). However, columns
 (iii) and (vi) document even lower observed
 efficiency levels. Subjects competed away
 much of the available exchange surplus-
 typically even more than predicted by the
 double-value model.'8 As discussed below,
 the main cause of these low efficiencies is
 that buyers who do not have the highest-
 value draw often win the auction. Columns
 (iii) and (vi) show that average observed
 efficiency is greater in the three-buyer treat-
 ments than in the six-buyer treatments in
 four out of the six 10-period sequences.
 This provides weak evidence consistent with
 Hypothesis 3.

 Both the Nash and double-value models
 are symmetric, and thus both imply that the
 buyer with the highest value submits the
 highest bid.19 Therefore, ignoring tied bids,
 inefficiency can only occur with symmetric
 buyers if the winning buyer pays more than
 her value. In the three-buyer treatment for
 the values drawn in the experiment, the
 Nash model predicts that this high bid ex-
 ceeds the cost draw and wins in about 64
 percent of the periods, and in about 14
 percent of the periods the winning bidder
 pays more than her value. According to the
 double-value model, the high bid exceeds
 the cost draw in 78 percent of the periods

 17Formally, this statistical test is carried out using a
 random-effects model analogous to equation (12) with
 the difference between the high bid and the risk-
 neutral Nash model prediction as the dependent vari-
 able.

 18Although the double-value model would appear to
 compete away all profits, this was not possible because
 bids were constrained to the cost draw range [$0.01,
 $9.99]. Therefore, the double-value model implies that
 bids associated with all values above $4.99 should clus-
 ter at the upper endpoint, $9.99. The conditional ex-
 pected cost draw for bids of $9.99 is $4.99, so these
 bids had positive expected profit. Because the upper
 endpoint of costs was c = $9.99, allowing buyers to bid
 up to some point b> $9.99 would simply raise the
 clustering point for maximum bids without affecting
 the conditional cost distribution. No optimal bid would
 lie in the interval [cT, b], because higher bids could only
 increase the probability of winning and would not
 increase the conditional distribution of costs.

 19Two or more buyers may submit tied bids of $9.99
 at times in the double-value model. Recall that ties are
 broken randomly.
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 TABLE 3-THEORETICAL AND OBSERVED AVERAGE PROFITS AND EFFICIENCY (HUMAN OPPONENTS)

 Six-buyer treatment Three-buyer treatment

 (i) (ii (iii) (iv (v) (vi)
 Theoretical Double-value Observed Theoretical Double-value Observed
 Nash profit theoretical profit average profit Nash profit theoretical profit average profit

 Periods (efficiency) (efficiency) (efficiency) (efficiency) (efficiency) (efficiency)

 Inexperienced:
 1-10 14.49 5.01 2.45 28.01 12.45 23.24

 (83.9) (29.0) (14.2) (91.0) (40.4) (75.5)
 11-20 7.87 1.37 1.91 12.80 3.81 4.14

 (68.9) (12.0) (16.7) (67.2) (20.1) (21.8)
 21-30 17.30 17.17 13.96 32.31 29.84 22.40

 (86.5) (85.9) (69.8) (92.3) (85.3) (64.0)

 1-10 and 21-30, 31.79 22.18 16.41 60.32 42.29 45.64
 pooled (85.3) (59.5) (44.0) (91.7) (64.3) (68.9)

 All 1-30, pooled: 39.66 23.55 18.32 73.12 46.10 49.78
 (81.4) (48.4) (37.6) (86.3) (54.4) (58.7)

 Experienced:
 1-10 8.92 4.26 0.52 11.28 7.24 7.95

 (73.5) (35.1) (4.3) (65.3) (41.9) (46.0)
 11-20 15.01 10.88 7.16 29.59 21.53 15.96

 (74.9) (54.3) (47.7) (90.7) (60.0) (48.9)
 21-30 10.45 7.28 7.00 27.45 8.62 -9.51

 (58.5) (40.7) (39.1) (97.3) (30.5) (-33.7)

 1-10 and 21-30, 19.37 11.54 7.52 38.73 15.86 -1.56
 pooled (64.5) (38.4) (25.0) (85.1) (34.9) (-3.4)

 All 1-30, pooled: 34.38 22.42 14.68 68.32 37.39 14.40
 (68.7) (44.8) (29.3) (87.4) (47.9) (18.4)

 Note: Efficiencies (reported in parentheses) are percentages.

 but loses money in 28 percent of the peri-
 ods. In the inexperienced-buyer sessions the
 realized frequencies lie between these two
 model predictions: high bids exceed the cost
 draw in 67 percent of the periods and lose
 money in 21 percent of the periods. In con-
 trast, buyers become more aggressive in the
 experienced sessions: high bids exceed the
 cost draw in 83 percent of the periods and
 lose money in 34 percent of the periods.
 Results are similar for the six-buyer treat-
 ment, with one exception: in the experi-
 enced sessions, the frequencies of accepted
 bids (88 percent) and accepted bids that
 lose money (33 percent) are similar to the
 double-value model predictions (90 percent
 and 22 percent, respectively). Therefore, the
 realized efficiencies in the experienced ses-
 sions shown in Table 3 fall short of the
 double-value model predictions, but not be-
 cause buyers are winning the auction too
 often compared to the double-value model.

 Instead, efficiency suffers primarily because
 buyers who do not have the highest-value
 draw frequently win the auction. This does
 not seem to be due to systematic asymme-
 tries in the buyers' bid strategies, based on
 the estimated error components in the
 random-effects models reported above that
 employ the error structure uit = Ti + sit. The
 variance in the Ti subject-specific error term
 is typically one-half to one-tenth as large as
 the variance in the unsystematic error
 term ?iti

 B. All Bids

 Figure 2 illustrates the observed mean
 bids and the Nash and double-value model
 mean bid predictions by buyer number
 treatment for the two experience levels. This
 figure includes all bids, including the losing
 bids. Observed bids are clearly lower in the
 three-buyer treatment than the six-buyer
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 FIGURE 2. AVERAGE BIDS BY NUMBER OF BUYERS AND EXPERIENCE
 TREATMENTS: OBSERVED AND THEORETICAL PREDICTIONS (HUMAN OPPONENTS)

 treatment, which supports Hypothesis 2. The
 average difference is 29 cents in the inexpe-
 rienced-buyer sessions and 28 cents in the
 experienced-buyer sessions (paired across
 identical value draws), which are both sig-
 nificant at the 5-percent level using a ran-
 dom-effects model similar to equation (12).
 Note, however, that the mean bids for both
 treatments are greater than their respective
 risk-neutral Nash model predictions and less
 than the double-value model predictions.
 These differences are also statistically sig-
 nificant using the random-effects model,
 with one exception. In the six-buyer treat-
 ment with inexperienced subjects the test
 does not reject the risk-neutral Nash model.

 Figure 2 indicates that average observed
 bids are between the two model predictions
 and suggests that bids become more com-
 petitive with increased experience. One can
 test the hypothesis that increased experi-
 ence increases bids by comparing bids across
 experience treatments. Because values var-
 ied across sessions it is necessary to control
 for the drawn values. The Nash model sug-
 gests the following "value markup" equa-
 tion, which can control for value variation
 across sessions:

 (13) bit = I,1Dlvit + f32D2Vit + uit

 where bi, is the bid of buyer i in period t,

 vi, is the value drawn by buyer i in period t,
 D1 is an indicator variable equal to 1 if t is
 from an inexperienced session, D2 is an
 indicator variable equal to 1 if t is from an

 experienced session, and P, and 162 are
 "markup coefficients" to be estimated for
 each of the two experience levels. As in
 equation (12), I use a random-effects model

 with uit = Ti + si, and employ two-step gen-
 eralized least-squares estimation. (The

 risk-neutral Nash model implies that P, =
 82 = 1.5 for the three-buyer treatment and
 that P = .l2 = 1.714 for the six-buyer treat-
 ment.) The design suggests a logical pairing
 of inexperienced and experienced sessions,
 as each cohort of subjects that began with a
 "363" ("636') inexperienced session re-
 turned for an experienced 636 (363) session.
 This pairing of sessions for each cohort re-
 sults in 4 cohorts x 2 buyer number treat-
 ments = 8 estimates of equation (13). In all
 8 cases, 132 > 811 indicating that buyers bid
 more aggressively in their experienced ses-
 sion. The difference is significant at the
 5-percent level in four of the eight cases.

 C. Individual Bidding Behavior

 Table 4 presents evidence that many indi-
 vidual buyers bid differently than predicted
 by either the risk-neutral Nash or double-
 value model. This table summarizes individ-
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 TABLE 4-NASH AND DOUBLE-VALUE HYPOTHESIS TESTS FOR INDIVIDUAL SUBJECTS FACING HUMAN OPPONENTS
 (PAIRED WILCOXON SIGNED RANK TESTS, 30 OBSERVATIONS PER SUBJECT)

 Nash model hypothesis Double-value model hypothesis

 Session number Number
 and experience Statistic too low Statistic too high Statistic too low Statistic too high of subjects

 Inexperienced:
 E3631,E3632 4 (3) 8 (5) 9 (5) 3 (1) 12
 E6361,E6362 4 (3) 8 (6) 9(6) 3 (0) 12

 All inexperienced: 8 (6) 16 (11) 18 (11) 6 (1) 24

 Experienced:

 E3633x,E3634x 1 (1) 11 (7) 9 (5) 3 (2) 12
 E6363x, E6364x 3 (1) 9 (5) 9 (7) 3 (3) 12

 All experienced: 4 (2) 20 (12) 18 (12) 6 (5) 24

 All Sessions 12 (8) 36 (23) 36 (23) 12 (6) 48

 Note: The numbers in parentheses are the numbers of times the model prediction was rejected at the 5-percent
 level of significance (two-tailed test).

 ual Wilcoxon signed rank tests for each
 (human-opponent) buyer that pair observed
 bids with the Nash and double-value model
 bid predictions (these tests employ 30 bid
 observations per subject). Overall, 36 out of
 48 buyers (75 percent) bid higher than the
 Nash-model prediction on average, and the
 test rejects the risk-neutral Nash model (in
 either direction) at the 5-percent level for
 31 subjects (65 percent). Exactly the same
 number of buyers (36) bid lower than the
 double-value model prediction on average,
 and the test rejects the double-value model
 (in either direction) at the 5-percent level
 for 29 subjects (60 percent). Although not
 shown in Table 4, results are virtually iden-
 tical when considering the auctions with
 three buyers and the auctions with six
 buyers separately.

 D. Buyers Facing Nash Robot Opponents

 The symmetric Nash model correctly pre-
 dicts the qualitative changes in bid behav-
 ior, but it implies lower bids than those
 observed in the data. Estimates of equation
 (13) discussed above indicate that bids tend
 to increase with subject experience, and
 subjects appear to leam to bid more aggres-
 sively as they compete against aggressive
 subjects. Learning is very difficult in this

 environment for at least three reasons. First,
 subjects must leam to best-respond against
 opponents who are also learning and revis-
 ing strategies. Opponent strategies are thus
 often unstable. Second, subjects do not ob-
 serve their opponents' strategies; instead,
 they only observe outcomes of their oppo-
 nents' value-to-bid mapping each period.
 Third, opponent strategies are typically
 non-Nash, and the Nash strategy of equa-
 tion (11) is not optimal against non-Nash
 opponent strategies. (Subsection E below
 discusses this in detail.) The robot-oppo-
 nent sessions control these learning prob-
 lems and test whether subjects can learn
 optimal (Nash) best responses to stable,
 known, Nash equilibrium strategies. The 26
 subjects competing against Nash robots re-
 ceived a complete description of the robot-
 opponent strategy.

 This treatment indicates that the risk-
 neutral Nash model performs better when
 subjects compete against computerized Nash
 opponents. Similar to the human-opponent
 bid data shown in Figure 2, bids are about
 30-36 cents higher on average in the six-
 buyer auctions as compared to the three-
 buyer auctions, and these differences are
 significant at the 5-percent level. Table 5
 presents risk-neutral Nash and double-value
 model tests for each of the 26 subjects who
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 TABLE 5-NASH AND DOUBLE-VALUE HYPOTHESIS TESTS FOR INDIVIDUAL SUBJEcTs FACING ROBOT OPPONENTS

 (PAIRED WILCOXON SIGNED RANK TESTS, 45 OBSERVATIONS PER SUBJECT)

 Nash model hypothesis Double-value model hypothesis

 Ordering of the

 number of buyers Statistic Statistic Statistic Statistic Number of
 and experience too low too high too low too high subjects

 Inexperienced:

 363 4(3) 3 (2) 7 (6) 0 (0) 7
 636 4 (3) 4 (0) 8 (8) 0 (0) 8

 All inexperienced: 8 (6) 7 (2) 15 (14) 0 (0) 15

 Experienced:

 363 3 (2) 3 (2) 5 (5) 1 (0) 6
 636 2 (2) 3 (2) 3 (3) 2 (1) 5

 All experienced: 5 (4) 6 (4) 8 (8) 3 (1) 11

 All Sessions 13 (10) 13 (6) 23 (22) 3 (1) 26

 Note. The numbers in parentheses are the numbers of times the model prediction was rejected at the 5-percent
 level of significance (two-tailed test).

 faced robot opponents (these tests employ
 45 bid observations per subject). An equal
 number of buyers bid above and below the
 risk-neutral Nash prediction, and the
 Wilcoxon test nearly always rejects the more
 aggressive double-value model. Unlike the
 human-opponent data presented above, av-
 erage bids (not shown) frequently do not
 exceed the risk-neutral Nash predictions.

 The data shown in Table 4 indicate that
 36 of the 48 human-opponent subjects (75
 percent) bid more aggressively than the
 risk-neutral Nash prediction, and the data
 shown in Table 5 indicate that 13 of the 26
 robot-opponent subjects (50 percent) bid
 more aggressively than the risk-neutral Nash
 prediction. These relative frequencies are
 significantly different (X2] = 4.71; p value
 = 0.03), using a 2 x 2 contingency table
 analysis. A 3 x 2 contingency table that clas-
 sifies subjects as (i) bidding significantly too
 high, (ii) bidding significantly too low, and
 (iii) not bidding in a manner that is signifi-
 cantly different from the risk-neutral Nash
 prediction (all at the 5-percent level indi-
 cated in Tables 4 and 5) also indicates a
 significant treatment effect [X 2] = 5.99; p

 value = 0.05].20 I also tested for differences
 between robot-opponent and human-
 opponent behavior for the bids with identi-
 cal value draws, pooling across subjects and
 again employing a random-effects model to
 capture systematic differences across sub-
 jects. Consistent with the results shown in
 Tables 4 and 5, the average robot-opponent
 bids are usually lower than the average
 human-opponent bids, and the differences
 are significant at the 5-percent level for all
 but the "experienced 636" order treatment.
 I therefore conclude that competing against
 stable, known, Nash equilibrium strategies
 results in less aggressive bidding than the
 bidding observed in the human-opponent
 sessions and that this result is not due to
 sampling (population) differences.

 20I thank an anonymous referee for suggesting this
 analysis. Using a lower significance threshold for re-
 jecting the risk-neutral Nash model results in lower X2
 statistics for the treatment differences (4.52 and 4.13
 using a 10-percent or 20-percent threshold, respec-
 tively; the 10-percent critical value for this X2 statistic
 is 4.61).
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 920 THE AMERICANECONOMIC RE VIEW SEPTEMBER 1995

 E. Best ResponsesAgainstAggressive
 Opponent Strategies

 The significantly more aggressive bidding
 in the human-opponent treatment relative
 to the robot-opponent treatment may result
 from differing best responses to opponent
 bids in the two environments. The robot-
 opponent subjects competed against Nash
 robots, so the bid function given by
 equation (11) is the best response for
 risk-neutral subjects. In contrast, the
 human-opponent subjects competed against
 subjects who generally bid more than the
 risk-neutral Nash prediction. It is easy to
 show that, for a risk-neutral subject bidding
 against N -1 opponents who all use the
 linear bid function of the form b(vi) = 8 vi,
 the best response is still the bid function of
 equation (11).21 However, bids were con-
 strained to be less than $10, so linear bid
 functions are not possible over the entire
 range of values [$0.00, $5.83] if the slope
 parameter 8 exceeds 1.714. For example, in
 the double-value model with 8 = 2, subjects
 bid the maximum $9.99 for all value draws
 greater than $4.99. I calculated best re-
 sponses to the following general piecewise
 linear bid function:

 (14) b(vi) (ggg forvi<9.99/8- 9.9for v1?>9.99/8S.

 The Nash bid function of equation (11) is
 generally no longer a best response if oppo-
 nents employ this more aggressive bid func-
 tion with 8 > 1.714.

 This piecewise linear bid function pro-
 vides a good approximation to the empirical
 bid distributions. For N,= 3 buyers in the

 A

 experienced sessions, 8 = 1.80 provides
 the best fit (R2 = 0.945); for N= 6 buyers in
 the experienced sessions, 8 = 1.90 provides
 the best fit (R2 = 0.953). The fit decreases
 only marginally for the double-value (8 = 2)
 model: R2 = 0.937 and R2 = 0.951 for the
 three-buyer and six-buyer auctions, respec-
 tively. (Recall that the risk-neutral Nash bid
 function is 8 = 1.5 for three buyers and
 8 = 1.714 for six buyers. The risk-neutral
 Nash model fits the empirical bid data with
 R2 statistics of 0.922 and 0.947 in the
 three-buyer and six-buyer auctions, respec-
 tively.) The risk-neutral best response to
 this empirical bid function in the six-buyer
 auctions (8 = 1.90) is calculated using nu-
 merical methods and is also piecewise lin-
 ear: bid the Nash bid of 1.714 xvalue for
 values less than or equal to $5.15, and bid
 the maximum $9.99 for all greater values.
 Against the double-value bid function (8 =
 2.0), the value cutoff for best responses of
 $9.99 falls to $5.09. In the three-buyer auc-
 tions the risk-neutral best response to the
 empirical bid function (8 = 1.80) is the Nash
 bid of 1.5 x value for all values; however,
 against the double-value bid function the
 best response is to bid $9.99 for all values
 greater than $5.46. Although these are not
 mutual best responses that constitute a Nash
 equilibrium, these calculations indicate that
 risk-neutral bidders facing aggressive oppo-
 nents should bid more aggressively than the
 Nash model for high-value draws. Since sub-
 jects facing Nash robots do not generally
 bid systematically above the risk-neutral
 Nash prediction (Table 5), while subjects
 facing aggressive human opponents do
 (Table 4), these differing best responses
 may explain the significant differences in
 the human-opponent and robot-opponent
 treatments.

 V. Conclusion

 This paper studies a feature of the EPA
 auction for sulfur dioxide emission allow-
 ances that leads to potentially serious incen-
 tive problems. Sellers receive the bid price

 21 The objective function in this case is

 EU(bi)= [,D c[Vi-2 ]

 The first-order condition that characterizes the best
 response can be simplified to

 Vi - bi + (N-1 )[v1 -0.5bi] = 0

 because the slope term 8 cancels out, so the optimal
 bid function is again b(vi) = vi2N/(N + 1).
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 of a specific buyer, and their asking price
 determines their trading priority. Sellers
 with the lowest asking prices receive the
 highest bids; consequently, sellers have an
 incentive to submit offers that underrepre-
 sent their true costs of emission control.22 A
 symmetric Nash model of the seller side of
 this auction (tested here for an inverted and
 strategically symmetric problem facing buy-
 ers) indicates that increased competition
 (increasing N) can make this incentive
 problem worse. Vickrey (1961) demon-
 strated that increasing the number of buyers
 in a first-price auction reduces the incentive
 to misrepresent true valuations. In contrast,
 the amount of misrepresentation in the EPA
 auction increases as the number of competi-
 tors on one side of the market increases, so
 that increased competition reduces effi-
 ciency.

 The laboratory results presented here
 support this main qualitative prediction for
 buyers bidding against human opponents as
 well as for buyers bidding against Nash robot
 opponents. Increasing the number of com-
 peting buyers from three to six increased
 overall bids, increased winning bids, and
 often reduced efficiency. However, the data
 usually reject the quantitative predictions of
 the risk-neutral Nash model when buyers
 face other human opponents. Bids in this
 treatment are consistently more aggressive
 than the risk-neutral Nash equilibrium, al-
 though -they are not as aggressive as the
 highly competitive "double-value" model of
 bidding. Unlike overbidding relative to the
 risk-neutral Nash equilibrium in first-price
 auctions (see e.g., Cox et al., 1988), the
 overbidding reported here is inconsistent
 with risk aversion. Risk aversion under the
 current auction rules implies bids below the
 risk-neutral Nash equilibrium. Furthermore,
 the asymmetry in the expected loss function

 suggests that overbidding should be less
 likely than underbidding.

 However, buyers facing computerized
 Nash "robot" opponents did not bid system-
 atically above the risk-neutral Nash equilib-
 rium; an equal number of subjects bid above
 and below this theoretical prediction. More-
 over, risk-neutral best responses to the
 aggressive bids in the human-opponent
 treatment usually involved aggressive bids
 above the Nash equilibrium for high-value
 draws. This suggests that the aggressive bids
 in this auction environment could be ex-
 plained by a small subset of high-bidding
 subjects. The high bids of this subset in
 early periods would lead to best-response
 bids for risk-neutral (or possibly even risk-
 averse) subjects that are also above the
 risk-neutral Nash equilibrium. In later peri-
 ods this could ultimately lead to aggressive
 bids for most subjects. This explanation im-
 plies that bids should increase with experi-
 ence, which is strongly supported in the
 data. In any case, the evidence reported
 here indicates that the EPA auction pro-
 vides little incentive for truthful value
 revelation and may be poorly designed for
 trading emission allowances.
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