Literaturrecherche (10 %):

- Einsatzstoffe und deren Eigenschaften, Preise und Verfügbarkeiten
- Reaktionsprodukte und deren Eigenschaften, Verwendung, Preise und produzierte Mengen
- Gängige Eduktqualitäten
- Reaktionspfade / Reaktionsnetzwerke → Prozessalternativen
- Reaktorsysteme / Katalysatoren / Betriebsbedingungen
- Stoffdaten des Reaktionsgemischs und Abschätzung des Trennaufwands

Untersuchung Reaktionssystem (40 %):

- Gleichgewichtsuntersuchung unter Berücksichtigung des Einflusses auf Umsatz/Ausbeute/Selektivität durch:
 - o Eduktzusammensetzung
 - o Temperatur
 - o Druck
- Auswahl eines geeigneten Reaktor-Katalysator Systems und einer Kinetik zur Beschreibung der Reaktion
- Untersuchung des kinetischen Reaktors unter Berücksichtigung des Einflusses auf Umsatz/Ausbeute/Selektivität durch:
 - o Zusammensetzung
 - o Temperatur
 - o Druck
 - Geometrieparameter → Verweilzeit
 - o Umsatz / Selektivitätsdiagramme

Entwicklung der Trennsequenz (40 %):

- Detaillierte Definition der Trennaufgabe und Recherche der benötigten Stoffdaten / Stoffeigenschaften
- Unter Zuhilfenahme der bekannten heuristischen Regeln eine geeignete Trennsequenz entwickeln
 - o Ggf. Auswahl einer Waschflüssigkeit
 - o Ergänzende Stoffdatenrecherche zu Löslichkeiten

- o Anpassen der Trennsequenz
- o Rückführungen planen
- Betriebsparameter festlegen
- o Möglichkeiten der Wärmeintegration berücksichtigen
- Grobe Berechnung von Startwerten mit Hilfe einfacher Bilanzen (Rektifikation, Absorption)
- Sukzessive Implementierung der Trennsequenz in Aspen Plus, Absorber als RadFrac Modell und Destillation erst über Short Cut
- Detaillierte Auslegung der Rektifikationskolonnen unter Verwendung der folgenden Tools:
 - o Interne Design Specs
 - Sensitivitätsanalysen
 - o Optimierung (selbstständige Auswahl einer Zielfunktion!)

Ziel: Optimale Trennung bei geringen Betriebs- und Investitionskosten

Wärmeintegration (10%):

- Abschätzung des Integrationspotentials mit Hilfe der Pinch Point Methode
 - o Ggf. mit Aspen Energy Analyzer
- Berechnung von möglichen Verschaltungen von Wärmetauschernetzwerken
 - o Ggf. mit Aspen Energy Analyzer
- Auswahl einer geeigneten Verschaltung und Umsetzung in der stationären Simulation in Aspen Plus

Feedback + Tipps und Tricks Aspen (zählt nicht zur Präsentationszeit)

Bewertungskriterien:

- Inhaltliche Ausarbeitung der Präsentation und inhaltliches Verständnis der prozess- und verfahrenstechnischen Zusammenhänge
 - Kritische Einordnung der eigenen Ergebnisse
 - Transparente Darstellung von Annahmen, Validierungsgrößen, Randbedingungen und

Ergebnissen

- Klare und leserliche Darstellung der Ergebnisse, Fließbilder, ...

- Einheitliches Design von Folien und Diagrammen
- Präsentationsstil und Souveränität