RUHR-UNIVERSITÄT BOCHUM

Computer-Aided Process Design Beispiele aus der simulationsgestützten Prozessentwicklung

Organization 2.0 SoSe 2024

Dr.-Ing. Maria Polyakova

- E-Mail: polyakova@fluidvt.rub.de
- Fon: 0234 32 26 470
- Office: IC 3/121

• Thorben Hochhaus, M.Sc.

- E-Mail: <u>hochhaus@fluidvt.rub.de</u>
- Fon: 0234 32 26 470
- Office: IC 3/099

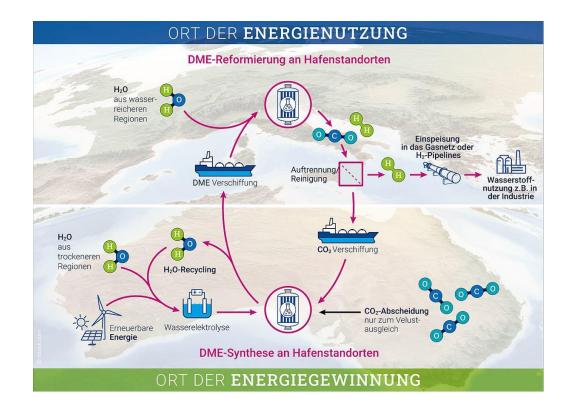
Johannes Wloch, M.Sc.

- E-Mail: wloch@fluidvt.rub.de
- Fon: 0234 32 26 470
- Office: IC 3/099

Agenda

- Organization of block course
- Presentation of example
- Clarification of expectations and evaluation criteria
- Organization of exam and exam preparation
- Group assignment and internal clarification of working modes
- Open questions and discussion

General conditions for classroom event


- Course takes place in CIP Pool 3 (IC 03/452).
- Please check that each of you can login on to the computer. Take care about it, before Monday, July, 22th Same for FlexNow!
- We will share the supervision in the 10 days!

 \rightarrow there is always someone there to help and answer questions (maybe one day exception in the second week)

- Short reminder on course hours:
 - morning 8:00 11:30
 - afternoon 13:00 17:00

This year's example: DME (Dimethyl ether)

DME production: 250.000 t per year Operating hours: 8.500 h per year

DME includes:

- In liquid form as a solvent
- Propellant in deodorants
- Hydrogen storage

5

Possible research questions:

- Efficiencies (Plant, Chemical, Carbon,...)
- Where does the carbon come from? What does it cost?
- Cost calculations
- Where do the educts come from?
- **GWP / Climate impact?**
- System-wide heat integration
- What to use the DME for?
- What to use by-products / side-products for?

Time table (for orientation only!)

Тад	Datum	Inhalt
	15.07.2024	Announcement of the process example, clarification of expectations, division into groups and start of literature research
1	22.07.2024	Short presentations of the groups on literature research (~ 15 min per group) Aspen Plus® 101 → Clarification of need
2	23.07.2023	Definition of the boundary conditions for modelling the process example. Simulation studies for the reaction
3	24.07.2023	Reaction simulation studies: Reaction kinetics Determining the reaction conditions
4	25.07.2023	Development and design of the necessary separation sequence Sequential implementation of the separation sequence
5	26.07.2023	Sequential implementation of the separation sequence Rigorous modelling of the separation sequence
6	29.07.2023	Detailed analysis and optimization of the separation sequence
7	30.07.2023	Recirculation and closing of material cycles Optimisation calculations for the overall process
8	31.07.2023	Analysis of overall flowsheet / process, heat integration, system optimization

RUB

7

- Literature review DME production (until July, 22th)
 - General information, ...
 - Advantages, disadvantages, application scenarios, relelvant boundary conditions,...
 - Input materials and their properties, prices and availability
 - Reaction products and their properties, use, prices and quantities produced
 - Common reactant qualitiesReaction pathways / reaction networks
 - Process alternatives
 - Reactor systems / catalysts / operating conditions
 - Material data of the reaction mixture and estimation of the separation effort
- Overall goal: Do not only search for values and pictures, do also evaluate critically and look for reasonable sources for the validation of your simulation!
- First estimation of mass and energy balances based on simple KPIs!

- Investigation of reaction system:
- Equilibrium analysis taking into account the influence on conversion/yield/selectivity:
 - Reactant composition
 - Temperature
 - Pressure
- Selection of a suitable reactor-catalyst system and kinetics to describe the reaction
- Investigation of the kinetic reactor, taking into account the influence on conversion/yield/selectivity through
 - Composition
 - Temperature
 - Pressure
 - Geometry parameters → Residence time
 - Conversion / selectivity diagrams

- Development of the separation sequence:
 - Detailed definition of the separation task and research of the required substance data / substance properties
 - Develop a suitable separation sequence using the known heuristic rules
 - Customise the separation sequence
 - Plan recirculation
 - Determine operating parameters
 - Consider the possibilities of heat integration
 - Rough calculation of initial values using simple balances (rectification, absorption)
 - Successive implementation of the separation sequence in Aspen Plus
 - Detailed design of the rectification columns using the following tools: Design Specs, sensitivity analyses, optimization
- Goal: Optimised separation with low operating and investment cost

Heat integration:

- Estimation of the integration potential using the pinch point method
 - If necessary with Aspen Energy Analyser
- Calculation of possible interconnection of heat exchanger networks
 - If necessary with Aspen Energy Analyser
- Heat Pumps appliacation ...

Evaluation criteria for the presenation and the exam / discussion

- **Expertise / content elaboration**
- Critical reflection of the results achieved for each process step / sub-process
- Transparent presentation of assumptions and other relevant parameters
- Transparent presentation of data used for model validation

Short presentations on literature review:

- Clear design of slides and illustrations / figures
- Clear visualization of the results
- **Cooperation during the course**
- **Presentation style and confidence** Feedback on the preparation and the presentation of results

12

Examination procedure:

- Exam is performed as a group exam (with individual evaluations!)
- Procedure: 30 minutes presentation per group
 5 minutes break
 - ~45 minutes oral exam per group

(= Discussion of the process example and the results based on your slides.)

Dates: Exams are possible in these periods: 12.08-16.08 and 02.09-10.09; 20.09
 As a group, please name a preferred date on Monday, July 22st

Example for a structure of the presentation:

 Assignment – Litertaure Review – Reaction – Separation – Analysis – Process Integration – System Evaluation

Organization on exam preparation & helpful hints

- Take the opportunity to get feedback in the short presentations!
- Use the time we are available for questions as intensively as possible!
- Use the opportunity to prepare for future tasks and situations in industry!
- Do not postpone questions or ambiguities!
- Consultation hours for last questions and discussions for exam preparation:
 - by arragement

Computer-Aided Process Design

SoSe 2023

Group division and organization

- If needed: short introduction
- How will you organize your work?
 - Sharing and securing data
 - Meeting before and after the block seminar
 - • • •
- Do you need anything else from us?
 - • • •

Computer-Aided Process Design

Open questions?