Übersicht

4. Herstellung von Nanostrukturen

- 4.1 Schichten
- 4.2 Optische Lithografie
- 4.3 Elektronenstrahllithografie
- 4.4 Nanoimprint-Lithografie
- 4.5 Rastersonden-Lithografie

MOS-Transistor

Thermische Oxidation erzeugt abrupte Grenzfläche zwischen kristallinem Silizium und amorphem SiO₂

Rauigkeit: <0.2 nm

TEM-Aufnahme einer MOS-Struktur

U. Schwalke et al., IEEE Electron Device Letters 20, 363 (1999)

Nanoelektronik | NE-4 Herstellung von Nanostrukturen

MOS-Transistor

Thermische Oxidation + Wafer-Bonding: Si on Insulator (SOI) erzeugt vergrabenen kristallinen Si-Film zwischen amorphem SiO₂

TEM-Aufnahme einer SOI-Struktur

M. Prunilla, J. Ahopelto, H. Sakaki, phys. stat. sol. (a) **202**, 970 (2005)

Epitaxie

Abscheidung kristalliner Schichten Beispiel: **AlGaAs/GaAs**

1000

°C

800

W. von Münch: Einführung in die Halbleitertechnologie. Teubner, Stuttgart 1993

Epitaxie

Metallorganische Gasphasenepitaxie: MOVPE, MOCVD

Epitaxie

Metallorganische Gasphasenepitaxie: MOVPE, MOCVD

Reaktionen: $Ga(CH_3)_3 + AsH_3 \rightarrow GaAs + 3 CH_4$ $[Ga(CH_3)_3] : [AsH_3] \approx 1 : 10$

Abscheiderate wird bestimmt durch den Fluss von Ga(CH₃)₃

Heterostrukturen durch umschalten zwischen TMGa und TMAI.

Schichtpräzision bei $\vartheta \leq 700 \text{ °C}: \Delta d \leq 1 \text{ nm}$

RUF

W. Prost: Technologie der III/V-Halbleiter. Springer, Berlin 1997

Epitaxie

MBE-Prozess

- Substrat aufheizen: Desorption von Restgas
- Effusionszellen heizen:
 - $$\begin{split} \vartheta_{Ga} &= 930 \dots 980 \ ^{\mathrm{o}}\mathrm{C} & \mathrm{Fluss} = 10^{14} \dots 10^{15} \ \mathrm{cm}^{-2} \mathrm{s}^{-1} \\ \vartheta_{Al} &= 1070 \dots 1130 \ ^{\mathrm{o}}\mathrm{C} & \mathrm{Fluss} = 10^{14} \dots 10^{15} \ \mathrm{cm}^{-2} \mathrm{s}^{-1} \\ \vartheta_{As} &= 300 \dots 330 \ ^{\mathrm{o}}\mathrm{C} & \mathrm{Fluss} = 10^{15} \dots 10^{16} \ \mathrm{cm}^{-2} \mathrm{s}^{-1} \end{split}$$

Haftkoeffizient der Ga-, Al-Atome ist 1, As haftet nur auf Ga-, Al-Atomen.

As-Überschuss sichert stöchiometrisches Wachstum. Ga-, Al-Fluss bestimmt Abscheiderate.

Epitaxie

MBE-Prozess

Die Grenzfläche der GaAs-AlAs-Heterostruktur ist atomar abrupt, aber nicht perfekt eben. Die in Wachstumsrichtung untere Grenzfläche ist stets glatter.

TEM-Aufnahme einer GaAs-AIAs-Heterostruktur.

Epitaxie

MBE-Prozess

Dotierstoffe: Donator: Si $N_{\rm D} \leq 10^{19} {\rm cm}^{-3}$

Si wird bei 650 °C auf Ga-Platz, über 700 °C auf As-Platz eingebaut. Si ist bei hohen Konzentrationen amphoter. In Al_xGa_{1-x}As sinkt die Ionisationsrate mit steigendem Al-Gehalt: Für n-Typ Al_xGa_{1-x}As gilt bevorzugt x<0.35. Akzeptor: Be, C $N_A \leq 10^{20}$ cm⁻³

Substrattemperatur:

Niedrig für geringe Interdiffusion, hoch für eine Oberflächenbeweglichkeit der Atome zum Einbau in einen Gitterplatz.

Epitaxie

Weitere Verfahren – Quellen der Epitaxiesysteme für GaAs- und InP-Substrate

III/V-Heterostruktur-Epitaxie auf GaAs und InP

Vapour Phase Epitaxy Liquid Phase Epitaxy Metal-Organic VPE Molecular Beam Epitaxy Metal-Organic MBE Chemical Beam Epitaxy Gas-Source MBE

Epitaxie Partialdruck Quellen-Epitaxie Quellen der Gruppe-V fluß verfahren Gr. III Gr. V (mbar) Weitere Verfahren viskos gasförmig MOVPE 1000 - 1 Partialdruck und Quellenform gasförmig **∠** 10⁻² CBE . Gasquellen: Molekularstrom **Kontinuierliche** fest <u>∠</u> 10⁻³ MOMBE Abscheidung möglich gasförmig GSMBE $\leq 10^{-3}$ Ultra-Hoch-Vakuum: fest In-Situ Messtechnik fest $\geq 10^{-6}$ möglich MBE

4.2 Optische Lithografie

Entwicklung industrieller Prozesse

Hg = Hochdrucklampe KrF = Excimerlaser ArF = Excimerlaser

UV = Ultraviolet DUV = Deep Ultraviolet EUV = Extreme Ultraviolet

EUV-Plasmaquelle, 13.5 nm, Vakuum, Reflexionsoptik

N. Harned, IEEE Spectrum 36, 35 (1999); R. van den Berg, Opto and Laser Europe 129, 29 (2005)

4.2 Optische Lithografie

Grundlagen

Projektions-Lithographie: Stepper und Scanner

Auflösungsgrenze R durch Fraunhofer-Beugung (Fernfeld):

$$R = k_1 \frac{\lambda}{NA}$$

Schärfentiefe DOF (Depth Of Field) durch Fraunhofer-Beugung:

$$DOF \approx \pm k_2 \frac{\lambda}{NA^2}$$

Verkleinerte Projektion, typische Verkleinerung um Faktor 4

IBM J. Res. Development **41**, 1-200 (1997)

4.2 Optische Lithografie

Grundlagen

Projektions-Lithographie: Beugungslimit

Auflösungsgrenze R durch Fraunhofer-Beugung (Fernfeld):

$$2R\sin\theta = m\lambda$$
$$R = \frac{m\lambda}{2\sin\theta}$$

$$m=1$$
 und $\sin heta = NA$

 $R = 0.5 \frac{\lambda}{NA} \qquad \text{allg.:} \qquad R = k_1 \frac{\lambda}{NA}$

Abbildung periodischer Strukturen an der Auflösungsgrenze

4. Herstellung von Nanostrukturen4.2 Optische Lithografie

Grundlagen

Projektions-Lithographie: begrenzende Faktoren

 k_1, k_2 : empirische Konstanten $\approx 0.5 \dots 1$

(Linsenfehler, Grad der Kohärenz; Intensitätsverteilung in der Aperturebene, optische Eigenschaften der Maske, Geometrie und Mechanik, Resistfilm und Prozessparameter)

DOF > Resistdicke, > Wafer-Unebenheit numerische Apertur $NA \approx 0.5 \dots 0.9$ G-Linie, $\lambda = 436$ nm $k_1 = 1$ $k_2 = 1$ NA = 0.8 $\Rightarrow R \approx 550 \text{ nm}$ $\Rightarrow DOF \approx 1.2 \ \mu m$

4. Herstellung von Nanostrukturen4.2 Optische Lithografie

Grundlagen

Projektions-Lithographie:

Lithografie an der

Auflösungsgrenze

Ist das Beugungslimit

 $R > 0.5\lambda$

die ultimative Grenze?

Maske

4.2 Optische Lithografie

Verbesserungen

Projektions-Lithographie:

Resolution Enhancement Techniques (RET) – $k_{\rm 1}$, Process Window

1. Thin-Film Imaging, Top-Surface Imaging (TSI) – Wafer

Stark absorbierender Negativ-Resist, nur wenige 100 nm belichtet, geringere DOF erforderlich; **Silylierung nicht vernetzter Bereiche,** resistenter gegen Sauerstoff-Plasma; unbelichteter Teil bleibt stehen (Positiv-Prozess)

RUB

CH₃

4.2 Optische Lithografie

Verbesserungen

Projektions-Lithographie:

Resolution Enhancement Techniques (RET) – k_1 , Process Window

- 2. Optical Proximity Correction (OPC) – Maske
- 3. Sub-Resolution Assist Features (SRAF) Maske

Einfluss der Beugung auf die übertragene Geometrie optimieren durch geometrische Korrekturen, die mittels Simulationen ermittelt werden.

4.2 Optische Lithografie

Verbesserungen

Projektions-Lithographie:

Resolution Enhancement Techniques (RET) – $k_{\rm 1}$, Process Window

4. Off-Axis Illumination (OAI) – Illuminator

Unterdrückung der 0. Ordnung, Transmission der 1. Ordnung = räumlicher Hochpass, halbiert theoretische Auflösung:

 $k_1 > 0.25$

4.2 Optische Lithografie

Verbesserungen

Projektions-Lithographie: Resolution Enhancement Techniques $(RET) - k_1$, Process Window

5. Phase-Shift Mask (PSM) – Maske

Verdopplung der räumlichen Frequenz durch Interferenz halbiert theoretische Auflösung:

 $k_1 > 0.25$

Principle of phase-shift masking

Liebmann et al. IBM J. Res. Development 45, 651 (2001)

4.2 Optische Lithografie

Verbesserungen

Projektions-Lithographie:

Resolution Enhancement Techniques (RET) $-k_{\rm 1}$, Process Window

6. Double Patterning Technology (DPT) – Maske, Wafer

Design split, sukzessive Belichtung "halber" Strukturen vergrößert das Prozessfenster

J. Park et al. Proc. SPIE 6349, 634922 (2006); C. A. Mack, IEEE Spectrum, 46, November 2008

4.2 Optische Lithografie

Verbesserungen

Projektions-Lithographie:

Resolution Enhancement Techniques (RET) $-k_{\rm 1}$, Process Window

6. Double Patterning Technology (DPT) – Maske, Wafer

Design split, sukzessive Belichtung "halber" Strukturen vergrößert das Prozessfenster

Ulrich Kunze

4.2 Optische Lithografie

Verbesserungen

Projektions-Lithographie:

Resolution Enhancement Techniques (RET) – $k_{\rm 1}$, Process Window

7. Liquid Immersion Technology (LIT) – Optics

Immersion mit Reinstwasser verkürzt die Wellenlänge, vergrößert die mögliche numerische Apertur auf NA > 1.3

https://www.asml.com/en/news/stories/2023/how-immersion-lithography-saved-moores-law

4.2 Optische Lithografie

Extremes Ultraviolett

EUV-Plasmaquelle: λ = 13.5 nm, Vakuum, 250 W Reflexionsoptik: 50x(Mo 2.5 nm + Si 4.6 nm), Reflektivität ≈ 65%

https://semiengineering.com/why-euv-is-so-difficult/

4. Herstellung von Nanostrukturen4.2 Optische Lithografie

Extremes Ultraviolett

Stand 2023: EUV-Lithografie wird eingesetzt ab 7 nm mit 28 nm Pitch (Intel, Samsung). TSMC plant den Einsatz ab 5 nm. Durchsatz 2020 bei 100–170 Wafer pro Stunde, abhängig vom Resist. Der Übergang zum Node 3 nm steht bevor. Bis dahin soll es mit *Single Patterning* reichen, dann evtl. ab 2 nm mit *Double Patterning*.

Ausblick: Die Standardleistung der EUV-Quelle beträgt derzeit 250 W. Ein Ausbau auf 500 – 1000 W erscheint möglich. Die numerische Apertur von derzeit NA = 0.33 wird in Kürze auf NA = 0.55 gesteigert, damit erreicht man eine Auflösung von 16 nm Pitch am 1.5 nm Node. In der Produktion verfügbar ab 2025. Auch der Resist für die NA = 0.55 Optik ist derzeit noch nicht verfügbar, ein Kandidat ist der Metalloxid-Resist. Aktuell wird die resistfreie Lithografie diskutiert (mit H-terminierter Si-Oberfläche), 5 nm große Strukturen wurden demonstriert, auch ein trockener Resist ohne *spin coating* ohne chemischen Abfall wie bei flüssiger Beschichtung ist möglich. NA = \rightarrow 0.75 ist in der Entwicklung, dauert etwa noch 10 Jahre.

> https://www.cyberoptics.com/improving-euv-process-efficiency/ https://semiengineering.com/making-chips-at-3nm-and-beyond/ https://semiengineering.com/high-na-lithography-starting-to-take-shape/

4.3 Elektronenstrahllithografie

Direktschreiben

Strahlerzeugung

Fokussierter Elektronenstrahl z.B. Elektronenmikroskop.

 $E = 1 \dots 100 \text{ keV}$

Kathode bestimmt Schreibkonditionen.

Fokus je nach Kathode und Elektronenenergie.

Kathode	W	LaB ₆	ZrO ₂ /W	W
Prinzip	TE	TE	TFE	FE
Ι _{max} (μΑ)	1	1	0.1	10-4
∆ E (eV)	2–3	1.3	0.35	0.22
T (K)	2700	1800	1800	300
I _{rausch} (%)	1	1	1	5–10
p (hPa)	10 ⁻⁶	10 ⁻⁸	10 ⁻⁹	10 ⁻¹⁰
bei 1 kV	25 nm	20 nm	1.4 nm	1.2 nm
bei 25 kV	3.5 nm	3.0 nm	0.6 nm	0.4 nm
bei 200 kV	0.2 nm	0.2 nm	0.1 nm	0.1 nm

W. Prost: Technologie der III/V-Halbleiter. Springer, Berlin 1997

4.3 Elektronenstrahllithografie

Direktschreiben

W. von Münch: Einführung in die Halbleitertechnologie. Teubner, Stuttgart 1993

4.3 Elektronenstrahllithografie

Direktschreiben

4.3 Elektronenstrahllithografie

Direktschreiben

Wechselwirkung der Elektronen mit Resist und Substrat

Proximity-Effekt maximal bei mittleren Energien (≈ 20 keV), WW bestimmt Auflösungsgrenze

A.N. Broers, A.C.F. Hoole, J.M. Ryan, Microelectronic Engineering 32, 131 (1996).

4.3 Elektronenstrahllithografie

Direktschreiben

Proximity-Effekt

Strategien zur Vermeidung des Proximity-Effekts:

Elektronenenergie	<5 keV (Niederenergie)	>80 keV	
Mechanismus	nur Vorwärtsstreuung	breite Rückstreuung aus dem Substrat	
Empfindlichkeit	hoch [Tilke et al.]	gering [Fujita et al.]	
Auflösung im Resist	ca. 20 nm [Golzhäuser et al.]	ca. 5 nm [Word <i>et al</i> .]	
Nachteil	spezielle Kathode!	Strahlenschäden [Tilke et al.]	

A. Tilke *et al.*, J. Vac. Sci. Technol. B **17**, 1594-1597 (1999); A. Golzhäuser *et al.*, J. Vac. Sci. Technol. B **18**, 3414 (2000); J. Fujita *et al.* Microelectronic Engineering **41/42**, 323 (1998); M.J. Word, I. Adesida, P.R. Berger, J. Vac. Sci. Technol. B **21**, L12 (2003)

4.3 Elektronenstrahllithografie

Direktschreiben

Minimale Strukturgröße

* Abkürzungen:

- PMMA = Polymethylmethacrylate
- CX = Calixarene
- C5/C5 = Hexapentyloxytriphenylene
- HSQ = Hydrogen silsesquioxane

Elektronenenergie (keV)	35	30	30	300	30	50
Resist (Typ) *	PMMA (p)	LiF +10% AIF ₃ (p)	CX (n)	PMMA (n)	C5/C5 (n)	HSQ (n)
Strukturübertragung	lift-off	keine	keine	keine	keine	keine
Lines / spaces (nm)	10 / 30	5 / 60	10 / -	15 / 15	14 / -	6 / 21
Literatur	Fischer, Chou	Fujita <i>et</i> <i>al.</i> 1995	Fujita <i>et</i> <i>al.</i> 1996	Hoole <i>et al.</i>	Robinson <i>et al.</i>	Word <i>et al.</i>

P.B. Fischer, S.Y. Chou, Appl. Phys. Lett. 62, 2989-2991 (1993).; J. Fujita *et al.* Appl. Phys. Lett. 66, 3065 (1995);
J. Fujita *et al.* Appl. Phys. Lett. 68, 1297 (1996); A. C. F. Hoole *et al.*, Semicond. Sci. Technol. 12, 1166 (1997);
P. G. Robinson *et al.* J. Vac. Sci. Technol. B 18, 2730 (2000); Word *et al.*, J. Vac. Sci. Technol. B 21, L12 (2003)

4.3 Elektronenstrahllithografie

Direktschreiben

Beispiele für 2.0 kV in CX

20 nm-Linie übertragen durch RIE in Si

M. Knop et al. Semicond. Sci. Technol. 20, 814-18 (2005).

4.3 Elektronenstrahllithografie

Direktschreiben

Carl Zeiss SMT – ORION PLUS helium ion microscope

EII

4.4 Nanoimprint-Lithografie

Thermoplastisches Verfahren

- 1. Si/SiO₂-Pressform herstellen
- 2. Substrat mit PMMA beschichten
- 3. Schicht auf 140-180 °C aufheizen, Struktur bei 40-130 bar einprägen
- 4. Abkühlen, Form abheben
- 5. Strukturübertragung durch RIE

L. J. Guo J. Phys. D: Appl. Phys. 37, R123-R141 (2004)

4.4 Nanoimprint-Lithografie

Thermoplastisches Verfahren

Stand der Technik

Feldgröße 100 mm Durchmesser

Verarbeitung von 100 mm-Wafern

Justierung mehrerer Ebenen durch Rückseiten-Marken auf 250 nm

Minimale Strukturgröße 5 nm, abhängig von der mittels EBL gefertigten Form

(a) SiO₂ NIL Mold

M. D. Austin et al., Appl. Phys. Lett. 84, 5299 (2004); H. Gao et al., Nano Lett. 6, 2438 (2006).; H. Schift, J. Vac. Sci. Technol. B 26, 458 (2008)

- 4.4 Nanoimprint-Lithografie
- Step & Flash Verfahren
- 1. SiO₂-Pressform herstellen, mit Ablösefilm beschichten
- 2. Substrat mit Transferschicht + Negativ-Resist beschichten
- Struktur bei 0.05 bar einprägen, durch 365 nm UV-Belichtung bei RT polymerisieren
- 4. Form abheben
- 5. Strukturübertragung durch RIE Halogen: Neg.-Resist, Sauerstoff: Transferschicht

T. C. Bailey et al., J. Photopolymer Sci. Tech. 15, 481 (2002).

4.4 Nanoimprint-Lithografie

Step & Flash Verfahren

Stand der Technik

Feldgröße 26 x 32 mm²

Verarbeitung von 300 mm-Wafern

Justierung mehrerer Ebenen durch optische Marken auf <10 nm

Minimale Strukturgröße 20 nm, abhängig von der mittels EBL gefertigten Form

50 nm / 20 nm Linien, 60 nm Säulen, 3-fach gestufter Graben in Si

D.J. Resnick, S.V. Sreenivasan, C. G. Willson, Materials Today 34 (2005).

4.5 Rastersonden-Lithografie

Atomic Force Microscope (AFM)

Funktionsweise

Strukturauflösung < 1 nm: Beispiel: Si(111)-Oberfläche 10x10 nm²

F. J. Giessibl, Reviews in Modern Physics 75, 949 (2003); http://www.molec.com/what_is_afm.html

4.5 Rastersonden-Lithografie

AFM-Lithografie

Direct Machining

GaAs/AlGaAs mechanisch direkt bearbeiten mit Silizium- oder Diamant- Spitze im *Tapping* oder *Contact Mode*

‡
AFM tip
GaAs
AlGaAs
GaAs (2 DEG)

C. K. Hyon *et al.*, Appl. Phys. Lett. **75**, 292 (1999); H. W. Schumacher *et al.*, Appl. Phys. Lett. **75**, 1107 (1999).;
 M. Versen *et al.*, Ultramicroscopy **82**, 159 (2000); J. Regul *et al.*, Appl. Phys. Lett. **81**, 2023-2025 (2002).

4.5 Rastersonden-Lithografie

AFM-Lithografie

Anodic Oxidation

GaAs/AlGaAs anodisch oxidieren mit leitender Silizium-Spitze im *Tapping* oder *Contact Mode*

AFM tip Ga(As	s)O _x
water film	
GaAs	
AlGaAs	
GaAs (2	2 DEG)

M. Ishii, K. Matsumoto, Jpn. J. Appl. Phys. **34**, 1329 (1995); R. Held *et al.*, Appl. Phys. Lett. **73**, 262 (1998); A. Fuhrer *et al.*, Superlattices Microstruct. **31**, 19 (2002)

4.5 Rastersonden-Lithografie

AFM-Lithografie

5 – 7 nm Resist aufschleudern Pflügen erzeugt Nano-Furche Übertragung durch Nassätzen

B. Klehn, U. Kunze, J. Appl. Phys. **85**, 3897 (1999); G. Apetrii *et al.*, Semicond. Sci. Technol. **17**, 735 (2002); U. Kunze, Superlattices Microstruct. **31**, 3 (2002).

Nanoelektronik | NE-4 Herstellung von Nanostrukturen

4.5 Rastersonden-Lithografie

AFM-Lithografie

Dynamic Ploughing

Entwurf:

Scan-Feld (s = 5 μ m) Vibrationsamplitude (a=A/A₀) Translation (Δ x, Δ y) Geschwindigkeit (v = 1 μ m/s) Wartezeit (t = 10 ms)

Beispiel:

320 nm **RUB** 1.55 μm **48-Eck**

4.5 Rastersonden-Lithografie

AFM-Lithografie

Dynamic Ploughing

Resistfilm nach dem Pflügen (AFM-Abb., 1.8 x 1.8 µm²)

SiO₂ (~ 2 nm) auf Si nach Übertragung durch Nassätzen (REM-Abb.)

AFM-Lithografie

Dynamic Ploughing

Flächen und Linien kombinieren Liniengitter verschmelzen

Struktur im GaAs/AlAs nach Übertragung durch 20 nm tiefes Nassätzen (Stopp)

D. Kähler et al., Microelectronic Engineering 61-62, 619 (2002)

Weitere Themen zur IC-Herstellung

- Cleaning
- Oxidation
- Diffusion
- Implanting
- Resist Deposition
- Level Adjustment
- Atomic Layer Deposition (ALD)
- Plasma Etching
- Metal Deposition
- Interlayer Vias
- Bonding
-
-

