Übersicht

- 3. Grundelemente für Quantenstrukturen
- 3.1 Quantenfilme 2D-Systeme
- 3.2 Quantendrähte, Quantenpunkte 1D- und 0D-Systeme

3.1 Quantenfilme – 2D-Systeme

Metal-Oxide-Silicon (MOS)

Räumliche Trennung der bindenden Ladung (pos.) vom Elektronenfilm verbessert Beweglichkeit

$$\frac{Q}{A} = eN_{\rm S} = \frac{\epsilon_0 \epsilon_{\rm OX}}{d_{\rm OX}} (V_{\rm g} - V_{\rm t}) = \epsilon_0 \epsilon_{\rm OX} F_{\rm OX}$$
$$F_{\rm OX} \le 10^9 \frac{\rm V}{\rm m} \qquad N_{\rm S} \le 2 \cdot 10^{13} \rm \ cm^{-2}$$

Schwellenspannung V_t

$$\Delta \phi$$
; $N_{\text{depl}} = N_{\text{A}} w_{\text{depl}}$; N_{ox} ; N_{it}

S.M. Sze: "Physics of Semiconductor Devices". Wiley, New York 1981 S.M. Sze: "Semiconductor Devices: Physics and Technology". Wiley, New York 2001

RUB

3. Grundelemente für Quantenstrukturen

3.1 Quantenfilme – 2D-Systeme

Metal-Oxide-Silicon (MOS): Funktionsweise der MOS-Struktur:

3.1 Quantenfilme – 2D-Systeme

Metal-Oxide-Silicon (MOS)

Beweglichkeit bei tiefen Temperaturen ist abhängig von *N*_S:

Potentialfluktuationen, Lokalisierung:

$$N_{
m S} < 10^{11} {
m cm}^{-2}$$

Coulomb-Zentren durch $N_{\rm OX}$; $N_{\rm it}$ $N_{\rm S} \approx 10^{11}...10^{12}~{\rm cm}^{-2}$

4.2 K 10 Weff (cm²/v·s N_{min} (cm⁻²) 10 $b : 0.8 \times 10^{11}$ $c : 1.2 \times 10^{11}$ $e : 2.1 \times 10^{11}$ $d : 2.2 \times 10^{11}$ h. 3.7×10^{11} 10¹² 1013 1011 $N_{s}(cm^{-2})$

Si/SiO₂-Grenzflächenrauigkeit, diffuse Streuung:

$$N_{\rm S} > 10^{12} {\rm ~cm^{-2}}$$

A. Yagi, M. Nakai, Surf. Sci. **98**, 174-180 (1980) T. Ando, A.B. Fowler, F. Stern, Review of Modern Physics **54**, 437 (1982)

3.1 Quantenfilme – 2D-Systeme

Metal-Oxide-Silicon (MOS)

I. V. Kukushkin, V. B. Timofeev, Springer Series in Solid-State Physics **71**, Springer, Berlin 1987, pp. 136-145

3.1 Quantenfilme – 2D-Systeme

Dotierung

Dünne Dotierschicht: *ठ***-Dotierung**

$$\frac{Q}{A} = e\frac{N_{\rm D}}{A} = eN_{\rm S}$$

real: Schichtdicke 1-2 nm

$$N_{\rm S} < 10^{14} {\rm ~cm^{-2}}$$

Nachteil: Starke Coulomb-Streuung,

$$\sigma = e N_{\rm S} \mu$$

 $\mu \approx 10^2 \dots 10^3 \ {\rm cm}^2 / {\rm Vs}$

A. Zrenner, F. Koch, K. Ploog, Surface Science **196**, 671 (1988)

RUB

3. Grundelemente für Quantenstrukturen

homogene Dotierung

F

FF

3.1 Quantenfilme – 2D-Systeme

Heteroschichten

Ersatz des amorphen Isolators durch kristallinen HL mit großer E_{g}

Gleiche Gitterkonstante (epitaktisch)

Potentialsprung im betreffenden Band

Bandverlauf durch Komposition und Dotierung

Ŧ

J.H. Davies, The physics of low-dimensional semiconductors. Cambridge University, Cambridge 1998

δ-Dotierung

Æ

Nanoelektronik | NE-3 Grundelemente für Quantenstrukturen

H

Ħ

3.1 Quantenfilme – 2D-Systeme

Heteroschichten

Schichtaufbau definiert Grenzflächenbarrieren

Ladungsträger im Quantenfilm durch **Modulationsdotierung** räumlich getrennt von den Donatorrümpfen

3.1 Quantenfilme – 2D-Systeme

Heteroschichten

Al_{0.3}Ga_{0.7}As/GaAs

Eisenstein et al. Phys. Rev. Lett. 88, 076801 (2002)

3.1 Quantenfilme – 2D-Systeme

Bandoffset

Weitere Eigenschaften:

 $E(\mathbf{k}); m^*; \epsilon_{\mathsf{S}}; \chi_{\mathsf{S}}; N_{\mathsf{A}} - N_{\mathsf{D}}; a$ (Gitterkonstante)

3.1 Quantenfilme – 2D-Systeme

Gitteranpassung

... ist wichtig für Schichten hoher Qualität. Gitterfehlanpassung führt zu **verspannten Schichten**. Dickere Schichten relaxieren und bauen Versetzungen ein.

Elastisch verspannte Schichten geringer Fehlanpassung bilden **pseudomorphe Systeme**.

Kritische Schichtdicke als Funktion der Fehlanpassung $\Delta a/a$:

W. von Münch: Einführung in die Halbleitertechnologie. Teubner, Stuttgart 1993

Quantenfilme – 2D-Systeme 3.1

Gitteranpassung

Bei Gitterfehlanpassung $\Delta a/a > 1\%$ ist die kritische Dicke zu gering oder es bilden sich Cluster statt homogener Filme (Ge/Si, InAs/GaAs).

Die Epitaxie gelingt durch einfügen eines Gradientenpuffers (virtual or graded buffer): metamorphe Systeme.

J.H. Davies, The physics of low-dimensional semiconductors. Cambridge University, Cambridge 1998

Nanoelektronik | NE-3 Grundelemente für Quantenstrukturen

3.1 Quantenfilme – 2D-Systeme

Klassifizierungung

... der Heterokontakte nach der relativen Lage der Bandlücke (Substrat/Schicht):

L. Esaki; IEEE J. Quantum Electronic **22**, 1611 (1986); E.T. Yu, J.O. McCaldin, T.C. McGill, In "Solid State Physics", Vol. 46, Academic, New York 1992, pp. 1-146

3.1 Quantenfilme – 2D-Systeme

Bändermodell

Bandoffsets aus dem Anderson-Modell: $E_{\infty} - E_{C} = \chi_{S} \rightarrow \Delta E_{C} = \Delta \chi_{S}$ $E_{\infty} - \chi_{GaAs} = \chi_{AIGaAs}$ AlGaAs

Korrektur: Grenzflächen-Dipol (Differenz der Elektronegativitäten)

Randbedingungen für Verschiebungsdichte:

allgemein:
$$\epsilon_1 F_1 = \epsilon_2 F_2 \longrightarrow \epsilon_1 \frac{\partial E_{\rm C}^{(1)}}{\partial z} = \epsilon_2 \frac{\partial E_{\rm C}^{(2)}}{\partial z}$$

 δ -Dotierung: $D_1 - D_2 = \pm e N_{\delta} \begin{bmatrix} {\rm Donator} \\ {\rm Akzeptor} \end{bmatrix}$

J.H. Davies, The physics of low-dimensional semiconductors. Cambridge University, Cambridge 1998

3.1 Quantenfilme – 2D-Systeme

Bändermodell

Übergang von direkter zu indirekter Bandstruktur: GaAs und AIAs

J.H. Davies, The physics of low-dimensional semiconductors. Cambridge University, Cambridge 1998

Nanoelektronik | NE-3 Grundelemente für Quantenstrukturen

3.1 Quantenfilme – 2D-Systeme

Bändermodell

3.1 Quantenfilme – 2D-Systeme

Bändermodell

Typ der Heterostruktur hängt bei GaAs/Al_xGa_{1-x}As von der (in)direkten Leitungsbandkante ab:

3.1 Quantenfilme – 2D-Systeme

Bändermodell

Einfluss der Zusammensetzung auf die Bandlücke in Si/SiGe

Volumenbandstruktur für **Si_{1-x}Ge**_x, x<0.85

F. Schäffler, Semicond. Sci. Technol. 12, 1515 (1997)

3.1 Quantenfilme – 2D-Systeme

Bändermodell

Einfluss der Verspannung auf die Lage der Bandkanten in Si/SiGe

Si auf metamorphem Si_{0.7}Ge_{0.3}-Puffer

Hydrostatische Komponente: $\Delta V/V \approx +1.6\%$

Scherkomponente: $\Delta a_{\parallel}/a \approx +1.3\%$ $\Delta a_{\perp}/a \approx -1.0\%$

3.1 Quantenfilme – 2D-Systeme

Bändermodell

Leitungsbandkante für einen Si/SiGe-HeteroFET auf **metamorphem** Si_{0.7}Ge_{0.3}-Puffer

Typische Werte (T = 1 K)

14 nm dicker Spacer: $N_{
m S} \approx 5 \cdot 10^{11} \ {
m cm}^{-2}$

 $\mu \approx 2 \cdot 10^5 \text{ cm}^2/\text{Vs}$

3.5 nm dicker Spacer: $N_{\rm S} \approx 5 \cdot 10^{12} \ {\rm cm}^{-2}$ $\mu \approx 1 \cdot 10^4 \ {\rm cm}^2/{\rm Vs}$ Energieaufspaltung durch Verspannung (und Quantisierung)

3.2 Quantendrähte, Quantenpunkte – 1D- und 0D-Systeme

Laterale Potentialmodulation

eines Quantendrahts (1D), Verarmung der Umgebung durch eines Quantenpunkts (0D) Split-Gate Elektroden $-V_{g}$ 1D GaAs AlGaAs AlGaAs 0DGaAs

J.H. Davies, The physics of low-dimensional semiconductors. Cambridge University, Cambridge 1998

Aufsicht: Formgebung

3.2 Quantendrähte, Quantenpunkte – 1D- und 0D-Systeme

Laterale Potentialmodulation

3.2 Quantendrähte, Quantenpunkte – 1D- und 0D-Systeme

Laterale Potentialmodulation

3.2 Quantendrähte, Quantenpunkte – 1D- und 0D-Systeme

Laterale Potentialmodulation

D. Kähler: Quantentransport in nanoskaligen schichtkompensierten GaAs/AlGaAs Feldeffektstrukturen. Dissertation, Ruhr-Universität Bochum 2003

Nanoelektronik | NE-3 Grundelemente für Quantenstrukturen

3.2 Quantendrähte, Quantenpunkte – 1D- und 0D-Systeme

Laterale Potentialmodulation

Bandverlauf:

3.2 Quantendrähte, Quantenpunkte – 1D- und 0D-Systeme

Laterale Potentialmodulation

Lokale Anreicherung durch Abätzen einer Kompensationsschicht

Aufsicht: Formgebung eines Quantendrahts (1D), eines Quantenpunkts (0D)

3.2 Quantendrähte, Quantenpunkte – 1D- und 0D-Systeme

Selbstordnende Quantenpunkte

Mechanismus: Wachstumsmodus

Frank-van der Merwe: AlGaAs/GaAs Wachstum Lage für Lage

Stranski-Krastanow: InAs/GaAs Wachstum **verspannter Cluster**, max. Größe ohne Versetzung je nach Δa/a, Einbetten durch Überwachsen Ensemble von Quantenpunkten (0D)

REM-Abbildung von InAs-Quantenpunkten auf GaAs d \approx 25 nm, h \approx 4 nm (eingebettet)

R. Nötzel, Semicond. Sci. Technol. **11**, 1365-79 (1996); D. Bimberg, M. Grundmann, N.N. Ledentsov: Quantum dot heterostructures. Wiley, New York 1999

