Vorkus

Mathematik & Physik

zum Wintersemester 2024/25

Nils Heerten Christian Lehn Ercan Sönmez

Übungsblatt 8

Aufgabe 1 Lösen Sie die folgenden linearen Gleichungssysteme:

2. $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$

Aufgabe 2 Berechnen Sie die Determinanten der folgenden Matrizen:

 $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

2. $A = \begin{pmatrix} 4 & 5 \\ 7 & 8 \end{pmatrix}$

Aufgabe 3 Überprüfen Sie, ob die folgende Matrix eine Inverse besitzt, und falls ja, berechnen Sie diese:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}.$$

Aufgabe 4 Berechnen Sie die Inversen der folgenden Matrizen (falls sie existieren):

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$$

2.

$$A = \begin{pmatrix} 5 & 2 \\ 1 & 4 \end{pmatrix}$$

Aufgabe 5 Berechnen Sie das Produkt der folgenden Matrizen:

1.

$$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$

2.

$$A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}, \quad A \cdot A$$

Aufgabe 6 Berechnen Sie die Potenzen der folgenden Matrizen:

1.

$$A^2$$
, $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

2.

$$A^3$$
, $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

3.

$$A^4$$
, $A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

4. Zeigen Sie, dass für jede natürliche Zahl n gilt:

$$A^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}, \quad wobei \ A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Aufgabe 7 Es sei

$$R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

die Drehmatrix für eine Drehung um den Winkel θ .

- 1. Berechnen Sie die $R(\theta)$ für $\theta = 30^{\circ}, 60^{\circ}, 90^{\circ}$.
- 2. Zeigen Sie, dass das Produkt zweier Drehmatrizen $R(\theta_1)$ und $R(\theta_2)$ eine Drehmatrix $R(\theta_1 + \theta_2)$ ergibt:

$$R(\theta_1) \cdot R(\theta_2) = R(\theta_1 + \theta_2).$$