Übungsblatt 2

Aufgabe 1. Zeigen Sie, dass die folgenden Aussagen Tautologien sind:

- a) das Kontrapositionsgesetz: $(A \Rightarrow B) \Leftrightarrow ((\neg B) \Rightarrow (\neg A))$
- b) das De Morgansche Gesetz: $\neg(A \lor B) \Leftrightarrow (\neg A) \land (\neg B)$
- c) die Abtrennungsregel $(A \land (A \Rightarrow B)) \Rightarrow B$
- d) das Distributivgesetz $A \vee (B \wedge C) \Leftrightarrow (A \vee B) \wedge (A \vee C)$

Falls Sie noch Zeit haben, können Sie gerne weitere Sätze aus der Vorlesung überprüfen, z.B. Kommutativ- und Assoziativgesetze.

Aufgabe 2. Bilden Sie die Kontraposition zu den folgenden Aussagen

- a) Wenn ein Viereck ein Quadrat ist, ist es ein Rechteck.
- b) Wenn a < b ist, dann ist auch $a^2 < b^2$.

Aufgabe 3. Beweisen Sie:

Für jede natürliche Zahln gilt: Wenn n durch 2 teilbar ist, so ist auch n^2 durch 2 teilbar.

Aufgabe 4. Skizzieren Sie die folgenden Mengen im Koordinatensystem:

a)
$$\{(x,y) \in \mathbb{R}^2 \mid \sqrt{x^2 + y^2 + 1} = 2\}$$

b)
$$\left\{ (x,y) \in \mathbb{R}^2 \mid \left| \frac{1+x}{1-y} \right| \le 1 \right\}$$

c)
$$\{(a,b) \in \mathbb{R}^2 \mid a > b\}$$

Aufgabe 5. Geben Sie die Menge aller Zahlen $a, x, z \in \mathbb{R}$ an, für die der Bruchterm definiert ist:

- a) $\frac{1}{x^3}$
- b) $\frac{1}{x-1}$
- c) $\frac{1}{(x-1)(x+1)}$
- $d) \frac{3-x}{9-3x}$
- e) $\frac{14}{z^2+1}$
- f) $\frac{9}{a^2-1}$