Practical exercises:

Exercise

To conduct solute transport simulations, you first need a steady state groundwater flow model. You can use the homogeneous steady-state hydraulic model we have been using in the last couple weeks. However, I recommend increasing the hydraulic gradient to 10 m to obtain higher flow velocities. Simulate the transport of an initial tracer concentration of $50 \mathrm{~kg} / \mathrm{m}^{3}$ on the left side of your domain (e.g., column=5 \& row=25) for 100 days (8640000 s). Assume negligible retardation (Rd=1.0), a diffusivity of $0.00001 \mathrm{~m}^{2} / \mathrm{s}$ and a dispersivity length of 0.1 m . When conducting the simulation, make sure to tick the CFL criteria flag to ensure a small time step. Note, that you need to provide a raster map for groundwater sources/sinks (q) due to a bug in the current Grass GIS version. However, this map can be zeros.

Theoretical exercises:

Exercise

Explain the difference between RAM and SDD for data storage.

Exercise

Name three computer components which are critical for conducting advanced groundwater simulations and explain the role of each of those components on the performance of the simulation.

Exercise

Explain the difference between serial and parallel computing with respect to a groundwater flow model.

Exercise

Explain the differences between parallelization techniques of shared and distributed memory.

Exercise

Explain the term computational cost.

Exercise

Explain the difference between integer and floating-point arithmetic.

Exercise

Name the relationship between bit and byte.

Exercise

Calculate the memory demand of a 200×100 raster map of integers and of a similar sized raster map storing double precision float.

Exercise

Specify the number of arithmetic calculations necessary to solve the following equation: Tnew = Told $+d t^{*} k / e t a{ }^{*}(a-2.0 b+c) / d x^{\wedge} 2$

Exercise

Reduce the number of arithmetic calculations necessary to obtain the result of the following equation: 3.2 * $7.6+3.5$ * 3.2

