
Hydraulic groundwater modeling

• Week 8

• The hardware side of numerical groundwater modeling

1



Why worrying about performance?

• Simulation of the real world requires enormous computational 
resources

• Serial processors are obsolete after some time, because there is a 
physical limit to processor speed (speed of light)

• Upgrading to parallel hardware by adding more processors

• Instead of specially developed single processors use many off-the-
shelf (cheap) processors in parallel (e.g. through linux clusters)

2



The hardware

• For modeling we are interested in:
• Processor

• RAM

• Hard Disk drive

• Power Supply

• Cooling

• Additionally for high-performance:
• Video card (GPU)

• Network (Ethernet, Infiniband,...)

3



Power Supply & Cooling

• Power supply
• Converts alternating current (AC) to direct current (DC)

• Performance needs to be sufficient to power all ingredients

• (Often first part to get broken)

• Cooling
• Usually based on fans (air)

• large PCs have several separate fans (power supply, CPU, GPU)

4



Central processor unit (CPU)

• „computers brain“

• Consists of „cores“: Separate cores can process information 
simultaneously

• More cores = more tasks can be completed simultaneously

• Hyperthreading: Simulating more cores than there are physically
• execution of code simultaneously on a single core due to idle times

• In high-demanding, well-parallelized simulations this is a disadvantageous

• A CPU speed is expressed in cycles (GHz)

5



Persistent data storage

• Measures: 
• Capacity (GB/TB) 

• speed (revolutions per minute rpm)

• HDD:
• magnetic storage with moving parts (rotating disk)

• SSD 
• integrated circuit to store data. 

• no moving parts and mechanically more robust

• much faster in reading / writing operations than HDD but also more expansive

6



Random access memory (RAM)

• Temporary storage for data accessed by the CPU

• Parameters, variables initiated during a simulation will be stored here

• If required memory exceeds available RAM
• Data will be stored on HDD/SDD, which is comparably slow

• Software crash possible

• Memory management is a crucial part of simulation

7



Mainboard

• Main circuit containing most of the connectors

• „heart of the PC“

• Accommodates the Central Processor Unit (CPU), RAM slots, fan, …

• Limiting factor of RAM that can be added

• Limiting factor for network and GPU connections

• Determines communication speed between components

8



Integers and floating point arithmetic

• Integer:
• Integral values = whole numbers (like 1 2 3 0 -1 -2 -3)

• Float: 
• Floating point values = values that have potential decimal places (like 3.142 or

3.000 or -3.0)

9



Bits and bytes

• A number is usually stored in 32 bits

• A bit can have the value 0 or 1 

• Integer: 
• 1 bit for the sign (+/-) and 31 bits for the value

• Resulting value range: -231 – (231-1) 

• 1 Byte = 8 bit
• 32 bits = 4 byte

10



Machine accuracy

• Float
• 1 bit for the sign, 8 bits for the exponent, 23 bits for the mantissa

• Maximum value is around

• A 32-bit float has only a precision of 6 to 7 decimal digits
• You can represent 4.51523 ∙ 1035 or 3.12489 ∙ 10−27 but all further digits are not 

specified by the float

11

3.4 ∙ 1038

±𝑀 ∙ 2𝐸



Assessing memory demand

• Assume a regular grid
• Store two parameters (transmissivity and storativity)

• Solve for one variable (hydraulic head)

• Grid size 200 x 100 grid points = 20 000 entries

• For all stored values: 20 000 x 3 = 60 000 entries

• All filled with 32-bit floats: 60 000 x 32bit = 19 200 000 bits

• Divide by 8 to obtain bytes = 2 400 000 bytes

• Use unit prefix = 2.4 MB

12



Assessing memory demand – ctd.

• Remember:
• Regular grids require less memory than unstructured grid

• The example of 3 values to be stored is an absolute minimum

• Solving the equation will require more memory

• Nowadays, the 32-bit is called „single precision“

• Often 62-bit (16 decimal digits) are used – called „double precision“

13



Computational costs

• In computer science: many definitions, rules of estimation,…
• Associated with ‚computational complexity‘

• Here: 
• Execution time per time step during simulation

• memory demands

• Costs usually increase with problem/input size (in bits)
• More grid points = more calculations (& maybe smaller time step)

14



Assessing code performance

• Rules of thumb:
• Integer operations are easier than floating point arithmetics

• Addition and subtraction are easier than multiplication and division

• Reduce number of calculations necessary
• Store often used combinations of variables in memory

• Reduce output
• Accessing graphics or hard drive slows down simulation

• Reduce unnecessary computational load
• Close non-used programs and windows

15



Towards high-performance computing (HPC)

• Also called „super-computing“

• In general associated with HPC centers around the world

• Performance measured in „floating point operations per second“ 
(FLOPS)

• Basically: A network of extremely powerful PCs with a really fast 
connection between them

• Used for various scientific applications, also in Geosciences!

• HPC techniques can be helpful at small scale networks as well

• First step: What are your computational requirements ?

16



Parallel programming

• The fundamental laws of physics are parallel in nature
• They apply at all times at each point in space.

• The state of a physical quantity in the near future depends on
• its present state

• its immediate past

• its nearest neighborhood

• The most important task in parallel programming:
• Which part of the problem can be efficiently parallelized?

17



Seriel vs. Parallel programming

• Serial style: 
• One processor which is executing a series of instructions

• There is a logical sequential flow through the program

• At any time there is only one operation being carried out by the processor

• Parallel computing: 
• Producing the same result using multiple processors

• The problem is divided between a number of processors

• Functional decomposition (multi-tasking)

• Data decomposition (data-parallel)

• Keep all the processors busy (load-balancing)

18



Parallelization techniques

• Shared memory:
• Separate CPU cores access the same RAM → one large / powerful PC

• Distributed memory:
• Not all involved CPU cores access the same RAM. Usually a network of 

„regular“ PCs.

• If several CPU cores work at the same problem, they need to communicate

19



Shared memory / Multiprocessing

• As all cores have all information, parallelization is rather simple

• If implemented, cores share automatically the load (not the domain!)

• A well parallelized program has all cores under full load

• Number of involved CPU cores also called „threads“

• Do not allow more „threads“ than you have physical cores (do not use 
Hyperthreading)

• Common technique used by most software nowadays

20



Distributed memory

• Pieces of information have to be passed from one thread to another
• Message passing (via network)

• Fast threads might need to wait for slower threads to communicate 
• blocking communication

• Assigned tasks for each core can not be easily altered during runtime

• Timing and amount of communication is important

• Large problems will require distributed memory

• Much more scalable than shared memory computation

21



Graphical Processor Units (GPU)

• Originally designed to rapidly manipulate data for visual output
• video games and realistic optical presentation

• Calculating quickly large amount of data is attractive for simulations

• Each GPU core is slower than a CPU core but there are hundreds of it

• Graphics memory similar size than RAM 

• GPUs fail if unbalanced load over cores (branch prediction)

• A GPU always needs a CPU as controlling and communication unit

22



Lessons learned

• Hardware management is crucial!
• Processor

• RAM

• Data storage

• Estimating hardware demands

• Modern software will apply HPC-techniques
• Parallelization techniques

• Shared/distributed memory

23


