Hydraulic groundwater modeling

e Week 6

* Features of realistic groundwater models



The troublemaker: Advection

* Advection is challenging to simulate accurately in numerical schemes.
* Some schemes are unconditionally unstable!
* Numerical diffusion might take place.

* Although CFL is fulfilled:
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* Solutions might violate boundedness
* Artificial oscillations might occur
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The advection equation

e Recap: Advective flux
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Upwind scheme — 1st order

* The upwind schemes discretizes hyperbolic PDE biased in the
direction determined by the sign of the characteristic speed v.
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Upwind scheme — 1st order

* Numerical diffusion = The simulated fluid exhibits a higher diffusivity

than the true medium
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Upwind scheme — 2nd order

* Applying same scheme with an higher order FD approximation
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Upwind scheme — 3rd order
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Advection — influence of initial conditions

* Keep everything as before, but vary
* Shape of Input signal
e Spatial dimensions
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Upwind 1st order — comparison input shape
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Upwind 2nd order — comparison input shape
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Upwind 3rd order — comparison input shape
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(Exercise: Discuss accuracy & boundedness for all shown examples)
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Eulerian and Lagrangian perspective

* Langragian perspective:

* Follow an individual fluid parcel as it moves through space and time as sitting
in @ boat and drifting down a river.

* Eulerian perspective:

* Focus on specific locations in space through which the fluid flows sitting on
the bank at a river side and watching the water pass the fixed location.

 |dea of markers: Combine the use of Lagrangian advecting points
(markers, tracers or particles) with an immobile, Eulerian grid.



Markers / Particles / Points

* So far:
* "Eulerian” simulations employing a fixed mesh

 Other methods:

e "Lagrangian" simulations feature nodes that may move following the velocity
field. (example: mesh free methods).

* Here:
* Lagrangian markers within a fixed eulerian grid



Particles / Markers

* Place Lagrangian markers within the grid
 The markers are advected with the flow field

* The markers hold physical properties or variables, which
are interpolated to the grid nodes and vic versa (if required)

* There is a large number of markers compared to the number of nodes



Interpolation between markers & grid




Summary Markers/Particles/Points

e Updating markers position is a non-trivial task in complex flow fields
* It requires interpolation of velocity values (and direction) at marker position

* Results of pure advection with markers are not subjected to
numerical diffusion

* There are non-accumulating interpolation errors between markers and nodes.

* BUT: back and forth interpolation between markers and nodes might
cause numerical diffusion

* The use of markers can be computationally expansive



Conclusions advection

* Advection is challenging to simulate accurately in numerical schemes
* There are various ways to model advection

* The accuracy of the schemes depends on the specific problems

* Large gradients are challenging to preserve

* Smaller time steps might increase diffusion as more iterations are
needed



Fractures as discrete features

* Rule of thumb: Fractures increase permeability, reduce porosity

* Fractures as part of the porous REV if their spatial scales overlap
* fracture length is smaller than the porous subdomain.

 Specific fracture modeling required if there is a fundamentally
different flow behavior in the fractures

 Similar effects also by engineering constructions (tunnels, pipes, etc.)



Geometrical description of fractures

* Plane plate model
* Fractures are wide and thin (aperture much smaller than length)
* Pressure gradient vertical to fracture surface is negligible

* Represent fractures by a reduced geometrical dimension (1d/2d)
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Fracture modeling

* Effective porous media
* Fractures as part of porous media
* Modified permeability, porosity, introduced anisotropy, and many more

* Dual Domain
* Two domains with different parameterization and mass exchange
e Still based on Darcy’s law

 Discrete fracture models
* Fractures are represented along grid lines
 Computationally expensive pre-processing in the numerical grid generation

* Embedded discrete fracture models
* Fractures on-top of continuous porous media



Effective porous media

* Include fractures through parameters of porous media
* Does assume similar flow behavior as in porous matrix
e Usually: Increased hydraulic conductivity due to fractures

* Anisotropy in hydraulic conductivity
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Dual Domain models

e Since the 1960s various forms and methods exist

e Separate two distinct pore systems with different hydraulic
parameters

* The medium is a superposition of those two systems

* Both pore systems interact through an exchange of mass,
temperature, solute — 7
+

* Transferred mass depends on assumptions
» Such as geometry for fractures, fracture density, ... ——
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Discrete Fracture models

* Account explicitly for the effects of individual fractures

* Some believe:
* the most accurate method for studying flow through fractured formations

 Drawbacks:

e computationally cumbersome and excessive data requirement for generating
network.

e Parameterization:

* fracture geometrical parameters are represented with statistical distribution
functions or with geostatistical parameters.

* Allows for different flow equations in fractures and matrix!



Fracture network models

 Discrete-fracture-network (DFN) models:
* fractures do not exchange fluid with the impermeable matrix.

* Discrete-fracture-matrix (DFM) models:
 Flow occurs in fracture network and matrix

* Equi-dimensional approach:
* Fractures and matrix are discretized with elements of same dimension
* High demands on mesh generation

* Lower-dimensional approach:
* Fractures are represented by elements of lower dimension than the matrix
* Simple mesh generation, reduced computational costs



Embedded discrete fracture models

e Separation of a reservoir into a fracture and a porous matrix domain

* A transfer function accounts for coupling effects between the two
domains

* Both domains are computationally independent except for the transfer
function

* Fractures:
* Thin and highly permeable
* Pressure gradient normal to fracture is negligible
* A lower dimensional representation of fractures
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Lessons learned

* Modeling advection requires special care
* Avoid steep gradients
* Numerical diffusion might occur
* Particle/Marker models might be helfpul but computationally expansive

* Fractures might require special care
* Modeling decission: Are fractures important?

 Different ways to include fractures depending on the situation and the
available information



