
Hydraulic groundwater modeling

• Week 6

• Features of realistic groundwater models
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The troublemaker: Advection

• Advection is challenging to simulate accurately in numerical schemes.
• Some schemes are unconditionally unstable!

• Numerical diffusion might take place.

• Although CFL is fulfilled:
• Solutions might violate boundedness 

• Artificial oscillations might occur
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The advection equation

• Recap: Advective flux

• In 1d and with constant flow velocity v
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Upwind scheme – 1st order

• The upwind schemes discretizes hyperbolic PDE biased in the 
direction determined by the sign of the characteristic speed v.
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Upwind scheme – 1st order

• Numerical diffusion = The simulated fluid exhibits a higher diffusivity
than the true medium
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Upwind scheme – 2nd order

• Applying same scheme with an higher order FD approximation
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Upwind scheme – 3rd order
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Advection – influence of initial conditions

• Keep everything as before, but vary
• Shape of Input signal

• Spatial dimensions
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Upwind 1st order – comparison input shape
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Upwind 2nd order – comparison input shape
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Upwind 3rd order – comparison input shape
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(Exercise: Discuss accuracy & boundedness for all shown examples)



Eulerian and Lagrangian perspective

• Langragian perspective:
• Follow an individual fluid parcel as it moves through space and time as sitting 

in a boat and drifting down a river.

• Eulerian perspective:
• Focus on specific locations in space through which the fluid flows sitting on 

the bank at a river side and watching the water pass the fixed location.

• Idea of markers: Combine the use of Lagrangian advecting points 
(markers, tracers or particles) with an immobile, Eulerian grid.
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Markers / Particles / Points

• So far:
• "Eulerian" simulations employing a fixed mesh

• Other methods:
• "Lagrangian" simulations feature nodes that may move following the velocity 

field. (example: mesh free methods).

• Here:
• Lagrangian markers within a fixed eulerian grid
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Particles / Markers

• Place Lagrangian markers within the grid

• The markers are advected with the flow field

• The markers hold physical properties or variables, which 
are interpolated to the grid nodes and vic versa (if required)

• There is a large number of markers compared to the number of nodes
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Interpolation between markers & grid
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Summary Markers/Particles/Points

• Updating markers position is a non-trivial task in complex flow fields
• It requires interpolation of velocity values (and direction) at marker position

• Results of  pure  advection  with  markers  are  not  subjected  to 
numerical diffusion
• There are non-accumulating interpolation errors between markers and nodes.

• BUT: back and forth interpolation between markers and nodes might 
cause numerical diffusion

• The use of markers can be computationally expansive
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Conclusions advection

• Advection is challenging to simulate accurately in numerical schemes

• There are various ways to model advection

• The accuracy of the schemes depends on the specific problems

• Large gradients are challenging to preserve

• Smaller time steps might increase diffusion as more iterations are 
needed
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Fractures as discrete features

• Rule of thumb: Fractures increase permeability, reduce porosity

• Fractures as part of the porous REV if their spatial scales overlap
• fracture length is smaller than the porous subdomain.

• Specific fracture modeling required if there is a fundamentally
different flow behavior in the fractures

• Similar effects also by engineering constructions (tunnels, pipes, etc.)
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Geometrical description of fractures

• Plane plate model
• Fractures are wide and thin (aperture much smaller than length)

• Pressure gradient vertical to fracture surface is negligible

• Represent fractures by a reduced geometrical dimension (1d/2d)

19



Fracture modeling

• Effective porous media
• Fractures as part of porous media

• Modified permeability, porosity, introduced anisotropy, and many more

• Dual Domain
• Two domains with different parameterization and mass exchange

• Still based on Darcy‘s law

• Discrete fracture models
• Fractures are represented along grid lines

• Computationally expensive pre-processing in the numerical grid generation

• Embedded discrete fracture models
• Fractures on-top of continuous porous media
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Effective porous media

• Include fractures through parameters of porous media
• Does assume similar flow behavior as in porous matrix

• Usually: Increased hydraulic conductivity due to fractures

• Anisotropy in hydraulic conductivity

21



Dual Domain models

• Since the 1960s various forms and methods exist

• Separate two distinct pore systems with different hydraulic 
parameters

• The medium is a superposition of those two systems

• Both pore systems interact through an exchange of mass, 
temperature, solute

• Transferred mass depends on assumptions 
• Such as geometry for fractures, fracture density, …
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Discrete Fracture models

• Account explicitly for the effects of individual fractures

• Some believe: 
• the most accurate method for studying flow through fractured formations 

• Drawbacks: 
• computationally cumbersome and excessive data requirement for generating 

network.

• Parameterization: 
• fracture geometrical parameters are represented with statistical distribution 

functions or with geostatistical parameters.

• Allows for different flow equations in fractures and matrix!
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Fracture network models

• Discrete-fracture-network (DFN) models: 
• fractures do not exchange fluid with the  impermeable matrix. 

• Discrete-fracture-matrix (DFM) models: 
• Flow occurs in fracture network and matrix

• Equi-dimensional approach: 
• Fractures and matrix are discretized with elements of same dimension
• High demands on mesh generation

• Lower-dimensional approach: 
• Fractures are represented by elements of lower dimension than the matrix
• Simple mesh generation, reduced computational costs
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Embedded discrete fracture models

• Separation of a reservoir into a fracture and a porous matrix domain
• A  transfer  function  accounts for  coupling  effects  between  the  two  

domains

• Both domains are computationally independent except for the transfer 
function

• Fractures:
• Thin and highly permeable

• Pressure gradient normal to fracture is negligible

• A lower dimensional representation of fractures
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Lessons learned

• Modeling advection requires special care
• Avoid steep gradients

• Numerical diffusion might occur

• Particle/Marker models might be helfpul but computationally expansive

• Fractures might require special care
• Modeling decission: Are fractures important?

• Different ways to include fractures depending on the situation and the
available information
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