<u>Practical exercises:</u>

Exercise

Include a well into your model using the source/sink term q. Find a suitable extraction rate and visualize the flow field towards the well. Then, add a second well further downstream to use for injection of water.

Exercise

You can use a Python script within the build-in Python console in Grass GIS to achieve a temporal output at several days after pumping. Use a homogeneous unconfined aquifer from one of the previous exercises to achieve a starting condition. Then use this starting condition to generate the flow field for 10 days of pumping.

Theoretical exercises:

Exercise

What kind of spatial and temporal discretization scheme is used in the groundwater flow module of Grass GIS? Check the manual page.

Exercise

Name one benefit and one drawback each for implicit and explicit time discretization.

Exercise

Explain the methodological difference between implicit and explicit time discretization.

Exercise

Discuss the relationship between stability and accuracy in one sentence.

Exercise

Calculate the maximum possible explicit time step in a groundwater flow model for an unconfined aquifer with the hydraulic conductivity of 0.001 m/s, an aquifer thickness of 30m, a storativity of 0.2 and a grid spacing of 20m.

Exercise

To achieve a temporal resolution of 1h, determine the required grid spacing in the aquifer described above.

Exercise

Derive the CFL criteria for the solute diffusion equation. Neglect any other transport terms, such as advection and retardation.

Exercise

Is a numerical advection diffusion model with a diffusion/dispersion coefficient of 0.3 m²/s and a flow velocity of 0.003 m/s on a grid with 100m resolution stable?

Exercise

Distinguish between boundedness and conservation of a physical quantity in a numerical model in your own words.

Exercise

Distinguish between model error and discretization error of a numerical model in your own words.

Exercise

Distinguish between consistency and convergence of a numerical model in your own words.

Exercise

Define the best achievable error level for a validation of a numerical model using field data.