
Hydraulic groundwater modeling

• Week 5

• Temporal discretization and stability concerns
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Discretization of time

• Similar to space, continuous time needs to be discretized

• Discretization of time is based on finite differences
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𝜕𝑓(𝑥, 𝑡)

𝜕𝑡
=
𝑓 𝑥, 𝑡 + 𝑑𝑡 − 𝑓(𝑥, 𝑡)

𝑑𝑡



Time step

• Time step dt = difference between discrete points in time

• Value of dt depends on
• Time scale of the process

• Spatial discretization

• Stability of the numerical method

• Desired accuracy

• Discretization method/scheme
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Explicit time discretization

• One time step after another in a sequence

• conditionally stable
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Example for explicit time discretization

• 1d GW flow:

• Finite difference discretization in time and space
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S
𝜕ℎ(𝑥,𝑡)

𝜕𝑡
= 𝑇

𝜕2ℎ(𝑥,𝑡)

𝜕𝑥²

𝑆
ℎ 𝑥, 𝑡 + 𝑑𝑡 − ℎ(𝑥, 𝑡)

𝑑𝑡
= 𝑇

ℎ 𝑥 + 𝑑𝑥, 𝑡 − 2 ℎ 𝑥, 𝑡 + ℎ(𝑥 − 𝑑𝑥, 𝑡)

𝑑𝑥²

ℎ 𝑥, 𝑡 + 𝑑𝑡 = ℎ 𝑥, 𝑡 +
𝑇𝑑𝑡

𝑆𝑑𝑥²
(ℎ 𝑥 + 𝑑𝑥, 𝑡 − 2 ℎ 𝑥, 𝑡 + ℎ(𝑥 − 𝑑𝑥, 𝑡))



Implicit time discretization

• A set of equations solved by linear algebra or iterative procedures

• unconditionally stable
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Example for implicit time discretization

• 1d GW flow:

• Finite difference discretization in time and space
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S
𝜕ℎ(𝑥,𝑡)

𝜕𝑡
= 𝑇

𝜕2ℎ(𝑥,𝑡)

𝜕𝑥²

𝑆
ℎ 𝑥, 𝑡 + 𝑑𝑡 − ℎ(𝑥, 𝑡)

𝑑𝑡
= 𝑇

ℎ 𝑥 + 𝑑𝑥, 𝑡 + 𝑑𝑡 − 2 ℎ 𝑥, 𝑡 + 𝑑𝑡 + ℎ(𝑥 − 𝑑𝑥, 𝑡 + 𝑑𝑡)

𝑑𝑥²

ℎ 𝑥, 𝑡 + 𝑑𝑡
𝑆𝑑𝑥2

𝑇𝑑𝑡
+ 2 − ℎ 𝑥 + 𝑑𝑥, 𝑡 + 𝑑𝑡 − ℎ(𝑥 − 𝑑𝑥, 𝑡 − 𝑑𝑡) =

𝑇𝑑𝑡

𝑆𝑑𝑥²
ℎ 𝑥, 𝑡



Time discretization schemes

• Euler forwards: The shown explicit scheme

• Euler backward: The shown implicit scheme

• Leap frog:  A two step method (=higher order scheme)

• Benefit: e.g. increased accuracy, conservative (for a selection of problems),…

• There are many, many more schemes with benefits/drawbacks!
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𝜕ℎ(𝑥, 𝑡)

𝜕𝑡
=
ℎ 𝑥, 𝑡 + 𝑑𝑡 − ℎ(𝑥, 𝑡 − 𝑑𝑡)

2𝑑𝑡



Example for comparison of explicit/implicit

• Scenario:
• Injection of warm water, e.g., industrial waste heat, into a low permeable 

aquifer

• Assume that flow velocity is negligible

• Homogeneous and isotropic aquifer properties

• Conceptual model:
• 1D heat diffusion (no advection)
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Comparison of explicit/implicit schemes
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Comparison of explicit/implicit schemes
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Comparison of explicit/implicit scheme

• Implicit schemes: 
• Unconditionally stable
• Numerical cumbersome: Requires solution of LSE or finding of roots

• Explicit schemes: 
• Stability might require a very small time step
• Quick and easy to solve

• Accuracy is independent of chosen scheme!

• There are schemes that are always unstable for different PDE types!

12



Stability

• During the solution the errors do not become larger

• For transient problems:
• A stable model produces a bounded solution whenever the exact solution is 

bounded

• For iterative methods:
• a stable method converges

• Stability does NOT imply accuracy – although instability implies 
inaccuracy!
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Example of (in)stability
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Stability criteria

• There are analytical criteria for stability

• Courant-Friedrich-Levy (CFL) / Courant number (C)

• With velocity u

• If C > 1, the information is transported faster than allowed by the 
characteristics of the system
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𝐶 =
𝑢 𝑑𝑡

𝑑𝑥
< 𝐶𝑚𝑎𝑥



Example: CFL criteria for diffusion problem

• Use FD forward in time - centered in space scheme
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ℎ 𝑥, 𝑡 + 𝑑𝑡 = ℎ 𝑥, 𝑡 +
𝑇𝑑𝑡

𝑆𝑑𝑥²
(ℎ 𝑥 + 𝑑𝑥, 𝑡 − 2 ℎ 𝑥, 𝑡 + ℎ(𝑥 − 𝑑𝑥, 𝑡))

𝐶 =
𝑇 𝑑𝑡

2 𝑆 𝑑𝑥²
< 1

𝑑𝑡 <
2 𝑆 𝑑𝑥²

𝑇



Stability concerns

• The allowed time step becomes very small for
• Large diffusivities

• Small dx

• Consequence: Smaller dx increases numerical cost
• Smaller dx = more cells to calculate

• Smaller dt for stability necessary

• Stability analysis is a wide mathematical field
• Advanced stability analysis based on eigenvalue analysis of the forward

operator

• Identify approaches that are always unstable for different kinds of PDE
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Peclet number

• For advection-diffusion equation (solute/heat transport)

• Ratio of advection and diffusion

• Stable if Pe < 2 (depending on numerical method) 

• If advection dominates, smaller grid size necessary

• Pe also helpful for choice of numerical scheme
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𝑃𝑒 =
𝑑𝑥 𝑣

𝐷



Convergence

• Smaller time step / finer grid spacing = the numerical solution 
approaches a constant value (asymptotically)

• Example: Consider an iterative procedure
• Termination criteria for iteration: a sufficient small change between iterations

• Convergence error: difference between approached value and 
numerical solution
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Consistency

• Truncation error = the difference between exact and numerical
solution
• Depends on spatial discretization (time and space)

• Consistency = Truncation error approaches zero for dt and dx 
approaching zero

• In other words: For smaller dt and dx the numerical solution
approaches the analytical solution.
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Conservativity

• Model equations represent balance equations for conserving physical 
quantities.
• In groundwater flow: Fluid mass, temperature, solute concentration

• The total sum of e.g., mass or energy should always be conserved

• A conservative numerical scheme satisfies this statement on both a 
local and a global basis

• E.g.: no thermal energy might get lost or generated by the numerical 
scheme itself
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Boundedness

• Numerical solutions should lie within proper bounds.

• Physically non-negative quantities (e.g., density, concentration, 
absolute temperature) must always be positive. 

• Unbounded solutions can occur on too coarse meshes or too large 
time steps in form of wiggles exhibiting overshoots and undershoots 
of the solution.

• Wiggles are usually a signal that the spatial discretization is too 
coarse, and some refinements (at least locally) are required

• Boundedness is a easy self-diagnosis property!
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Example for (violated) boundedness
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Error sources

• Modeling error = errors embedded in the conceptual model 
• Cause: assumptions and simplifications made

• Consequence: even if solved exactly, the solution is not a correct 
representation of reality. 

• Discretization error = resulting from the use of numerical methods
• Depending on numerical method and scheme used

• More accurate approximations can dramatically increase numerical costs
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Accuracy

• A scheme works accurately if both the discretization and the 
convergence errors remain sufficiently small

• Modeling errors are an additional concern

• Errors may cancel each other
• A solution obtained on a coarse mesh may agree much better with the 

experiment than on a finer mesh
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Accuracy and validity

• Validity: 
• Are you solving the right equations for the specific problem?

• Accuracy: 
• Are the equations approximated corrected?

• Numerical simulations are always APPROXIMATIONS!
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Example: Accuracy depending on time step
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Catching errors

• Verification: compare with analytical solution

• Benchmark: compare basic model with other numerical solutions of 
accepted quality

• Validation: comparison with high quality experimental data

• Multiple sources: 
• E.g., improper model equations, wrong parameters, inconsistent boundary/initial 

conditions

• Measurements can possess their own errors (in lab and field).

• There is no sense in reducing the modeling error below the level of
measurement accuracy.
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Lessons learned

• Definition of stability and effects of instability

• Calculation stability criteria (CFL, Pe)

• Definitions of different properties of a numerical model

• Detection of violation of some properties
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