

5.4 Lessons Learned
Each instructor gathered or developed videos as best fit their
course. The right-most column of Table 1 gives an estimate of
instructional time dedicated to creating and/or curating videos
across the different courses. Even when videos are curated rather
than created, the process of curating videos for a whole course
takes a significant amount of time.

We wanted the students to benefit from learning course concepts
from more than one perspective. This was particularly important
in the Web Applications course, where students had a wide range
of expertise from those who had never seen HTML to some who
had taken courses in high school or even had some job experience.
Providing a range of videos let students find resources that
matched their current experience levels and expanded upon what
we could cover during the semester.

Students utilized the video resources differently than a lecture,
particularly for programming topics. They commented that they
were able to follow along with the code on their own, and pause,
rewind, and replay as needed. Presenting such examples inside a
classroom, with students following along on their own computers,
is much more difficult. One student said: “The good thing about
videos is you can pause/play as you please and
rewind/fastforward when necessary,…”

The use of videos from various authors demonstrated the variety
of resources that exist on the Internet to help teach and provide
examples of code and programming concepts. The diversity in
resources promotes self-exploration to students, which they
demonstrated later in their homework. Many referred back to the
video tutorials while completing their homework, something that
is not possible if the lecture is only available live in class. One
student posted: “As I am finishing up my final website, I am going
back over the video tutorials for last minute help and ideas. They
are much easier to understand at the end of the semester!”

However, a disadvantage of curated videos was that they did not
always present a topic at a conceptual level, nor were they tailored
to the common misunderstandings or challenges that students in a
particular class have. Students often described situations in which
the author of the video didn’t present information clearly. “I
thought these videos were very unhelpful. The guy just seems to be
putting code on the screen and keeps saying "we will get to that
later" and just continues to build his website.”

To alleviate some of these issues, we provided a brief high level
conceptual explanation in class the week prior to the topic.
However, some students reported this was not sufficient and they
would have appreciated more conceptual information within the
videos themselves. We are considering the addition of our own
short conceptual lecture videos to address this issue.

Another drawback of online instruction is that watching videos is
a solitary activity. We are trialing opportunities for students to
comment, critique, and reflect on online videos in a more social
way, through the Video Collaboratory [14]. The Video
Collaboratory is an online system that allows groups of students to
privately and asynchronously discuss videos through text and
sketch annotations. For example, in our current HCI course,
students are required to watch the videos inside the Collaboratory,
and annotate them weekly. Members of the group can view each
other’s annotations and add to the discussion. We plan to extend
the use of the Collaboratory to more courses as we gain experience
in its use. We believe that the ‘shared watching experience’ in

small groups of 5-10 students creates a more intimate and less
intimidating forum for discussion around educational videos.

6. IN-CLASS ACTIVITIES
In addition to creating or collecting online videos, one of the other
major challenges for flipped classroom instruction is creating class
activities that teach course concepts and skills through active
learning. For our programming courses, labs are a critical active
learning component. But, the real challenge is to find active
learning activities to replace the time that would traditionally be
used for lecturing. We have developed two main types of in-class
activities: group problem solving and flexible quiz activities.

6.1 Pair Programming Labs
Similar to many programming courses, the Web Applications and
Media Computation courses include weekly pair programming lab
sessions. Typically, students were asked to edit and extend
existing code. In later parts of the course students had to code
from scratch. The tasks covered specific skills and language
constructs each week. Lab activities were carefully structured to
enable completion within the time allocated, assuming the student
had prepared. We have tested many strategies for pairing students
in the lab, including gender pairing and randomly changing the
pair each week or every other week. The purpose of switching
partners frequently is to help the students get to know a larger
number of students in their class and to make sure that students
don’t play the same role with the same person each week.

The use of pair programming was successful, and seemed to
encourage students to work both with their partner, and over time
with other students, to answer questions and learn new techniques.
Alternating the pairs was also important, as the skill and
knowledge level of students was quite varied.

6.2 Group Problem Solving Activities
For the non-programming courses, and on the non-lab day for the
programming-based courses, the problem solving activity is a
highly structured activity that is timed. Typically, students work in
small groups to encourage conversation and peer instruction. In
the HCI and Rapid Prototyping classes, these activities generally
involved students practicing design and evaluation skills. For
example, in the HCI class, when teaching needfinding, one or two
students in a group were asked to develop a persona and role play
a typical user, while the others in the group prepared interview
questions and conducted an interview. In Rapid Prototyping,
student groups utilized different techniques to create prototypes at
different levels of fidelity. In Web Applications, activities
included finding existing web pages to demonstrate weekly topics,
drawing conceptual diagrams and writing pseudo-code. In Media
Computation students often solved problems by writing pseudo-
code or doing other paper problem solving activities.

In all courses, we emphasize collaboration and critiquing. These
activities are then built upon later when students complete their
assignments, which test their application of the learned skills
without teacher supervision. In the HCI and Rapid Prototyping
courses, students can re-use and extend some of their in-class
activities as part of their assignments.

6.2 Flexible Quiz Activities
In flipped classrooms, instructors often use quizzes to incentivize
students to watch videos and come to class prepared. We also use
quizzes as learning activities, especially in the programming
courses. This idea is based on the finding that retrieving

221

information from memory improves long term retention [13]. The
quiz generally comprised multiple choice questions about textbook
and video content, or about code fragments. In contrast to the
problem solving activity, the quiz tests and reinforces conceptual
knowledge where the problem solving activity provides
scaffolding for programming skills or HCI methods.

Throughout the four courses, different techniques were used to
make the quiz an activity that encouraged peer learning and the
discovery and clarification of misconceptions. We developed
several strategies for student interaction around quizzes:

1. Students complete the quiz labeled only with their id number.
Quizzes are redistributed to others for peer grading. The
instructor directs the peer grading by discussing why
particular answers are right or wrong for each question.

2. Students complete the quiz on their own, and then are asked
to compare and discuss their answers with the students sitting
near them until all students sitting near each other have the
same answers. Each student’s quiz is graded separately.

3. Students form groups and each group completes a quiz,
again, ensuring that the answers are the consensus of the
group. All students in a group get the same grade.

4. Students complete the quiz using clickers and can talk to each
other before answering. The answers are aggregated on the
screen in front of the room, and instructors re-poll as needed.
Various game-like methods are used to create competition.

5. Student groups create a quiz based on their annotated videos.
Each group takes another group’s quiz and the group that
created the quiz grades the answers. In this way each group
creates a quiz, takes a quiz, and grades a quiz.

In all variations on the way the quiz was administered, the quiz
provided the focus for the peer learning and the discovery of
misconceptions. When misconceptions were uncovered, the
instructors conducted impromptu mini-lectures. Thus, the quiz
activities could often take up a significant portion of a class.

6.3 Lessons Learned
All of the in-class activities are designed to be collaborative in
some way. We promote peer instruction for the following reasons:
the social aspect of peer instruction helps students get to know
other students and making friends is important for program
retention; when students are socially relaxed they are likely to
learn more; some students have an easier time learning from peers
than from professors; learning from peers demonstrates that there
are many sources of knowledge; learning from peers exposes
students to different perspectives on issues; and, teaching peers
helps students clarify and solidify their own understanding of
course concepts.

In programming labs, we use pair programming with frequent
partner switches throughout the semester. In our workshop classes
we facilitate student collaborations in a variety of ways. In HCI
there is a high-stakes group project and teams typically sit together
and work together on in-class activities. In the Web Applications
and Rapid Prototyping courses, ad hoc groups or pairs are formed
for in-class activities. This works well in upper year classes where
students are typically comfortable forming teams and students
have friends that they want to work with.

In the Media Computation course, we created lightweight teams
consisting of 5 students per team. These teams sit together in
assigned seating during the peer instruction workshops each week.

These teams are called ‘lightweight’ because there is no direct link
between team activities and an individual’s final grade, though the
team works together all semester. We find this works well for
freshmen courses where students don’t know many people.

We found that emphasizing skill development during class
activities enabled us to create more open-ended homework
assignments that encouraged creativity. For example, in the Web
Applications course, students created a website to promote a
business or hobby. Many of the websites created were more
professional, with greater content, than assignments from prior
(non-flipped) years.

7. STUDENT FEEDBACK
The standard student evaluation forms administered at the end of
the semester typically start with statements about the instructor.
For example “My instructor displays a clear understanding of the
course topics.” “My instructor has an effective style of
presentation.” These create an impression that the quality of the
course depends on how much the instructor knows rather than on
how much the student learned. While it may be appropriate to
evaluate the quality of the instructor, flipped classrooms require a
survey that primes students to think about the quality of their
learning experience. We administered a survey to gather student
perceptions about the flipped classroom approach to provide
formative evaluation and immediate feedback from students.

Survey Item Mean SD

I felt I was more able to learn at my own pace
(compared to previous courses).

5.06 1.41

I was more able to recognize when I didn't understand
something (compared to previous courses).

5.00 1.34

I looked at extra information beyond the provided
material (compared to previous courses).

4.54 1.60

I felt that I learned more during class time (compared
to previous courses).

4.89 1.59

I felt that I learned more outside of class time
(compared to previous courses).

4.81 1.54

How helpful were the online videos for learning? 5.17 1.48

Learning from other students is just as good as
learning from the teacher.

4.76 1.47

Other students helped me to understand the right
answers while we were discussing clicker questions.

5.04 1.17

I helped other students to understand the right
answers while we were discussing clicker questions.

4.97 1.20

Explaining things to other students helped me to
understand them better.

5.35 1.09

How mentally demanding was the course? 4.55 1.24

How successful were you in accomplishing what you
were asked to do in this course?

4.35 1.72

How hard did you have to work to accomplish your
level of performance in this course?

4.95 1.36

Table 3: Post course student survey average responses.

The post-course survey was conducted across four courses with
responses from a total of 213 students. While each survey
contained course-specific items, the common part of the survey
consisted of 13 Likert-type items with a 7-point rating scale, with

222

