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The Human Brain

(WWW, Wikipedia, 2006; from NIH) (2007, http://www.jimpryor.net/.../neuron.jpg)

» approx. 100.000.000.000 neurons
» approx. 100.000.000.000.000 synapses
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(Churchland & Sejnowski, 1993; from Thompson, 1967)
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The Human Brain
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Computational Models
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Nonlinear model neuron
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Linear Model Neuron

A linear model neuron is described by:

N
y = Z wixi =w'x. (1)
i=1

This corresponds to a projection of the data onto the axis given by w
scaled with |w|.

=V
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Physiological Receptive Fields
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https://creativecommons.org/licenses/by/2.0/
https://en.wikipedia.org/wiki/File:Rice_fields_near_Sapa,_Vi%C3%AAt_Nam.jpg

Visual Pathways and Areas (Macaque)
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(Oram & Perrett, 1994, Neur. Netw. 7(6-7):945-972)
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Visual input from the retina
gets projected through the lat-
eral geniculate nucleus (LGN,
not shown here), which is sub-
cortical, to the primary vi-
sual cortex (V1, 'V’ and 'T’
indicating ’visual’ and ’pri-
mary’ respectively). From
there it goes through V2 and
V4 to the inferior temporal
cortex (IT), which can be fur-
ther subdivided into posterior
(PIT), central (CIT), and an-
terior (AIT) IT. IT is thought
to be instrumental for ob-
ject recognition, while V1-V4
extract more elementary fea-
tures. This path is referred to
as the what-path, because it
tells us what we see.

Another path goes through V2
and V4 to areas MT/MST,
which are particularly respon-
sive to motion. This path has

been termed the where- or how-path, because it is thought to tell us where the objects are or how we can
handle them, e.g. grasp them. The paths converge in the posterior (STPp) and anterior (STPa) superior
temporal polysensory area. Cells in STPa, for instance, have been found to be sensitive to body motion,

such as walking. Figure by Oram and Perrett (1994).



It is possible to make quite
detailed measurements of re-
sponse properties of single
cells in awake or anaesthetized

Measuring Receptive Fields

Screen animals. To measure vi-
——— Light stimulus sual receptive fields, one typi-
SO cally places an animal in front
receptive field of a computer monitor, let

the animal fixate the center
of the screen, presents vi-
sual stimuli, and simultane-
ously records extracellularly
from individual neurons. Vi-
sually driven neurons usually
respond only to stimuli within
Microelectrode — a particular region, which is
ir::;:;t:gc:é:f‘:ﬂ \ referred to as the receptive
potentials field. They also only re-
spond to particular shapes or
features, such as orientation,
color, or motion. One says the
12/48 cell has a tuning for one or
several of these features. One
also speaks of such cells as fea-

(http://www.medinfo.ufl.edu/... 2001-10-29 (outdated))

ture detectors.

Cells in retina and LGN
(lateral geniculate nucleus,

Center-Surround Cells in Retina and LGN which is a relay station
Lapreemereet Offcenter cel between retina and cortex,

oo have center-surround recep-

tive fields. Some of them

Corgonclles iy | Ganion el ok ot e respond best to a bright

Lt on spot on a dark background

o @ (on-center cell /stimulus),

others to a dark spot on a

Gl st e oo fes ity bright background (off-center

cell/stimulus). They do not
respond well to full field

No light on
center or
surround
Q@ stimuli (dark or bright).

Ep— ot dose ot e Interestingly, an on-center

t;‘-’ﬂ;?;., cell gives a response if an
surround
e

off-center stimulus disappears
Weak response Weak response

@

(o)

(release-of-inhibition reponse)
(low frequency firing) (low frequency firing) and the other way around.

(Delldot /Xoneca, 2005/2008, Wikimedia, CCO, URL)
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Assumed Connectivity

On-Center Off-Center
- +

- + - + . +

(Paskari, 2007, Wikipedia, CCO0, URL)
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Hermann Grid

(http://www-psych.stanford.edu/ 2001-10-29 (outdated))

Center-surround receptive
fields can be set up easily by
a corresponding feedforward
connectivity. For an on-center
cell, connections coming from
the center of the recptive
field would be excitatory
and those coming from the
surround would be inhibitory.
For off-center cell it would
be the other way around. A
canonical way of plotting such
a receptive field is to plot
the excitatory and inhibitory
regions in the visual field (see
lower left). Such receptive
fields are conceptually linear.

A Hermann grid is a white
square grid of appropriate size
on a black background. If you
look at it you might notice
that the white looks darkened
somehow at the crosses, but
only in the periphery and not
at the point of fixation. This
is an optical illusion that can
be explained with the center-
surround receptive fields in
the retina or LGN.
(http://wwu-psych
.stanford.edu/ 2001-10-
29 (outdated))



Hermann Grid
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(http://www-psych.stanford.edu/ 2001-10-29 (outdated))
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Simple Cells in Primary Visual Cortex (V1)

Stimulus:

ein

aus

(Hubel, 1989, Auge und Gehirn: Neurobiologie des Sehens, Fig. 4.10)
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To explain the Hermann grid
illusion, place a simple center-
surround receptive field at a
cross and at a line. By
adding the product of the im-
age gray value with the re-
ceptive field weight one gets
a somewhat lower response
at a cross (value 5) than a
line (value 5 1/2) due to the
stronger surround inhibition.
This effect depends on the
width of the stripes compared
to the size of the receptive
fields. In the fovea, i.e. around
the point of fixation, the re-
ceptive fields are very small
and the Hermann grid illu-
sion cannot be observed with
a coarse grid.
(http://wwwu-psych
.stanford.edu/

29 (outdated))

2001-10-

In the first cortical area dedi-
cated to visual processing, re-
ferred to as primary visual
cortex or, for short, V1, one
mainly distinguishes between
two types of cells based on
their receptive fields: simple
cells and complex cells. Both
cell types prefer oriented stim-
uli, such as bars and stripes,
but simple cells care about
the exact location of the stim-
uli while complex cells don’t.
Thus, in some sense complex
cells have a higher degree of
invariance than simple cells.
(Hubel, 1989, Auge und
Gehirn:  Neurobiologie des
Sehens, Fig. 4.10)



Complex Cells in Primary Visual Cortex (V1)

PN

Stimulus: ein aus
Figure: (Hubel, 1989, Auge und Gehirn: Neurobiologie des Sehens, Fig. 4.13)
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Orientation Tuning

320301

(De Valois et al., 1982)
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In the first cortical area dedi-
cated to visual processing, re-
ferred to as primary visual
cortex or, for short, V1, one
mainly distinguishes between
two types of cells based on
their receptive fields: simple
cells and complex cells. Both
cell types prefer oriented stim-
uli, such as bars and stripes,
but simple cells care about
the exact location of the stim-
uli while complex cells don’t.
Thus, in some sense complex
cells have a higher degree of
invariance than simple cells.
Figure: (Hubel, 1989, Auge
und Gehirn:  Neurobiologie
des Sehens, Fig. 4.13)

Simple and complex cells usu-
ally have preferences for cer-
tain orientations. This can
be measured by presenting
gratings of different orienta-
tion to the cell (or rather
the animal) and recording
the corresponding neural re-
sponses.  Normally, drifting
gratings are used, because the
cells respond stronger to mov-
ing stimuli.

The responses to different ori-
entations can be conveniently
visualized in a polar plot. One
simply plots the firing rate in
radial direction as a function
of orientation in azimuthal di-
rection.  The graph shows
a standard orientation tuning
with one preferred orientation
at about 160°, which appears
here as two lobes in 180° dis-
tance due to the two different

drifting directions. Since the two lobes have same size, the cell does not have a preference for a particular

drifting direction.
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Models of Visual Receptive Fields
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Standard Simple-Cell Model

cell’s output

—»T—»

weight vector
w

TI input vector
X

11

The standard model of a sim-
ple cell is simply a linear fil-
ter having the shape of a
wavelet. The response is the
inner product w”z (sum over
pointwise products) between
the filter (weight vector w)
and the image (input vector
x). Such a filter is strongly
excited by a bar or grating of
the correct frequency (in case
of a grating), orientation, and
exact position. If the grating
is shifted in phase by 180°, or
in position by one wavelength
orthogonal to the wave fronts,
the model unit gives a strong
negative response.



Standard Complex-Cell Model

cell’s output
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The standard model for a
complex cell is the so-called
quadrature filter pair model.
The response of two standard
simple cell models are squared
and added. The filters of
the two simple cells form a so
called quadrature filter pair,
in this case two wavelets that
differ only by a slight shift
of the stripes by half a stripe
width. Their relationship is
therefore similar to that of sin
and cos, for which sin(¢)? +
cos(¢)? = 1 holds, which im-
plies that the square sum is
invariant to a change of ¢.
Similarly, the response of the
standard complex cell model
is approximately invariant to a
shift of stimulus. This invari-
ance is the defining property
of an ideal complex cell.



Gabor wavelets are often used
for image processing and to

Gabor Wavelets model simple and complex

Gabor wavelets (with DC-correction) are defined as cells. They are localized
(2 1252 ) in space and frequency, and
pi(x) = Loexp | -2 exp(ik;” x) — exp _z they actually do that as pre-

J a2 202 J 2 ’ . . o
cise as theoretically possible,
with wave vectors k; having different orientations and different Le. they fulfill Heisenberg’s
frequencies. uncertainty relationship ex-

actly (side note for physi-
cists and electrical engineers).
A Gabor wavelet is essen-
tially the product of a Gaus-
sian (black solid line) with a
(co)sine wave and could there-
fore be written in its sim-
plest one-dimensional form as
exp(—x?) sin(z) (green dashed
line) or exp(—z?) cos(z) (blue
solid line); together these form
Gabor wavelets fulfill the uncertainty relationship exactly. a quadrature filter pair.

23/a8 The equation given on the
slide is more complicated and
simpler in some aspects for

several reasons. This is not essential for the lecture, but for the technically interested reader I explain
the differences.

The sin(x) and cos(z) wavelets are combined into one complex wavelet with exp(iz) = cos(z) + isin(z)
(second exponential in the equation). This makes in particular the convolution more efficient. Since a
convolution is always complex, the second convolution in the imaginary part comes for free.

The simple z in exp(iz) is multiplied by a wave number k; to allow chosing a spatial frequence different
from 1, and index j allows to chose different wave numbers for different cells, yielding exp(ik;z)

In two (or higher) dimensions a wave not only has a frequency but also a direction, thus k; becomes a two
(or higher) dimensional vector and the product kjz an inner product, yielding exp(iija:). (Please note
the difference between x representing an image, in which case it might be a 10000-dimensional vector for
a 100x100-pixel image, and @ representing space, in which case it is just two-dimensional for an image.
Here we use the latter version.)

It is common to add a parameter o to the Gaussian exp(—z?) to control its width, yielding exp(—%).

2,2
The additional factor k7 in exp(—kgjf2 ) scales the Gaussian such that all Gabor wavelets look alike, no
matter what frequency they have. This is referred to as self-similarity of the family of Gabor wavelets
with constant o.

The term — exp(—";) at the end pulls the cosine wavelet a bit down in the center to make it really DC-free

(DC stands for direct current here), i.e. the integral over the whole filter is zero. This is guaranteed for
symmetry reasons for the sine filter, but for the cosine filter it must be taken care of explicitely. The filter
being DC-free has the advantage that the response of the modeled simple or complex cell does not depend
on overall brightness of the image, which is a simple form of visual invariance.

2
The prefactor % finally scales the Gabor wavelets such that the average magnitude of the responses of
the convolution on natural images are more balanced for different k& and o.

13



Sparseness Principle
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(Olshausen & Field, 2004, Curr. Opp. Neurobiol 14:481)

A sparse representation

» can reduce metabolic costs, because fewer units are active,

» can reduce wiring, because fewer units need to be connected,
» can be more robust, because units tend to be more binary,
»

can simplify learning and processing, because relevant information is
more localized,

> .
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Sparse Coding

Assumption: Images can be written as a superposition of basis functions,

I(x) =Y aidi(x), (2)

1

with fixed functions ¢;(x) and variable coefficients a;.

Objective: Choose the (probably normalized) functions such that the
reconstruction error is small and the distribution of coefficients sparse, i.e.

minimize E := /(I(x)—Za,-¢>,-(x))2d2x+)\ Z\a,-| . (3)

——

sparseness term

reconstruction term

(Olshausen & Field, 1996, Nature 381:607-9)
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Olshausen and Field (1996)
have argued that the goal of
sensory coding is to yield a
sparse (D: spérliche(?)) rep-
resentation. A sparse rep-
resentation is one, where for
any given input only few units
are strongly active, all others
are close to zero. This code
might have various advantages
for the brain.

The figure (Olshausen and
Field, 2004) shows a non-
sparse representation at the
top and a sparse representa-
tion at the bottom.

The model by Olshausen and
Field (1996) assumes that im-
ages I(x) can be represented
by a linear superposition of
some fixed basis functions
¢i(x), wich leads to the first
term in the cost function F.
The basis functions may be
overcomplete, i.e. there may
be more functions than pix-
els in the image, and non-
orthogonal, which they must
be in cast of an overcomplete
set.

The weighting coefficients a;
vary from image to image and
should be sparsely distributed,
i.e. should be near zero most of
the time and only occasionally
have a large positive or nega-
tive value. The second term in
the cost function E formalizes
the sparseness objective.

An optimization procedure

optimizes both, the basis functions across all images as well as the weighting coefficients for each image

individually.

14



Filters Generating a Sparse Code of Natural Images
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(Olshausen & Field, 2004, Curr. Opp. Neurobiol 14:481, Fig. 1a)
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Neural Network Learning

27/48

15

The filters obtained by opti-
mizing the sparseness of the
code in the model by OI-
shausen and Field (1996) re-
semble simple cell receptive
fields fairly well (figure from
Olshausen and Field, 2004).



28/48

Perceptron Learning

211 41l 3 1
s3]l 7] B va
1l 2] 2 0
———— » — 788
21101 5
2l1lls6ll|lo] m-—a
31124 7
The unit has inputs x;, ..., weights w;, ...,

and an output y = xywy + xows + x3ws.

The unit is trained with examples that are supposed
to generate a positive or negative output.

The weights of the unit are initialized randomly.

If a negative output should actually be positive,
the input is added to the weights.

If a positive output should actually be negative,
the input is subtracted from the weights.

If the task can be solved at all,
then the algorithm finds the solution.

The solution also generalizes to new inputs.

Deep Neural Networks

2038 2048

28 Max pooling
pooling

(Krizhevsky, Hinton, & Sutskever, 2012)

» Artificial neural networks are inspired by the brain.

» They are good at processing sub-symbolic information.

» They can learn from examples.

29/48
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black widow

tick bumper car
starfish golfcart

mushroom herry aascar at

vertible ] agaric dalmatian squi 1 monkey
grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri
fire engine [ dead-man’s-fingers currant howler monkey

(Krizhevsky, Hinton, & Sutskever, 2012)
» 2012: Deep neural networks achieve super-human recognition rates in
many applications.
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Visual Invariances
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7 Visual
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Visual Pathways and Areas (Macaque)
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(Oram & Perrett, 1994, Neur. Netw. 7(6-7):945-972)

33/48

Visual input from the retina
gets projected through the lat-
eral geniculate nucleus (LGN,
not shown here), which is sub-
cortical, to the primary vi-
sual cortex (V1, 'V’ and 'T’
indicating ’visual’ and ’pri-
mary’ respectively). From
there it goes through V2 and
V4 to the inferior temporal
cortex (IT), which can be fur-
ther subdivided into posterior
(PIT), central (CIT), and an-
terior (AIT) IT. IT is thought
to be instrumental for ob-
ject recognition, while V1-V4
extract more elementary fea-
tures. This path is referred to
as the what-path, because it
tells us what we see.

Another path goes through V2
and V4 to areas MT/MST,
which are particularly respon-
sive to motion. This path has

been termed the where- or how-path, because it is thought to tell us where the objects are or how we can
handle them, e.g. grasp them. The paths converge in the posterior (STPp) and anterior (STPa) superior
temporal polysensory area. Cells in STPa, for instance, have been found to be sensitive to body motion,

such as walking. Figure by Oram and Perrett (1994).
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STPa

The Visual System
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response noresponse

(Wiskott, 2003, CogPrints 3321; after Oram & Perrett, 1994, J. Cogn. Neurosci.,

6(2):99-116)

This  schematic  drawing
(Wiskott, 2003) highlights
some organizational principles
of the visual system. It is
hierarchically structured in
areas (listed on the left; in
models usually referred to as
layers, not to be confused with
the layers of cortex), which
are coupled by feedforward
(gray upward arrows) as well
as feedback (gray downward
arrows)  connections  with
some shortcut connections
that skip an area. Processing
in each area takes about 10ms
(latencies are shown on the
left). Along the hierarchy the
receptive field sizes increase
(indicated by the triangles in
the middle), the feature com-
plexity increases (indicated
by some typical stimuli on the
right to which a neuron might

respond or not), and the invariance, e.g. to shift (or translation), scaling, and rotation, increases.
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Psychophysical Evidence for Size Invariance

15 block ‘Ind block conditions
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nd block
Condition

(Biederman & Cooper, 1992)

If one has seen an object not
too long ago, the naming re-
sponse to that object is faster
than it was the first time, even
if one is not aware that one has
seen it before. This effect is
called priming.

In this experiment naming re-
sponse times to line drawings
of objects were measured. The
response times were larger
(712ms) for the first presen-
tation ("1st block’) than for
the second presentation (aver-
age 630ms, '2nd block’), which
is due to the priming effect.
Interestingly, the priming ad-
vantage did not depend on
the size of the drawing (com-
pare ’Same Size’ with 'Differ-
ent Size’). However, it de-
pends on the object instance
of same name (compare ’Same
Exemplar’ with ’Different Ex-

emplar’), which indicates that the priming effect happens somewhere in the visual processing, where this
difference matters, and not somewhere in the 'naming area’, where the visual difference should not matter.
If the priming advantage would come from the 'naming area’, size invariance would be no surprise.

Taken together the results support the idea that visual processing is size invariant within the limits measured

here.
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The Simple Invariance Problem
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The Difficult Invariance Problem
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Slow Feature Analysis

23
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https://pixabay.com/en/snail-shell-crawl-mollusk-1330766/

Slowness as a Learning Principle
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Foldidk (1991), Mitchison (1991), Becker & Hinton (1992), O'Reilly & Johnson (1994), Stone &
Bray (1995), Wallis & Rolls (1997), Peng et al. (1998), Wiskott (1998), Kording & Kénig (2001),
Wiskott & Sejnowski (2002)

39/48 (Wiskott & Sejnowski, 2002, Neural Comp. 14(4):715-770)

Slowness as a learning prin-
ciple is based on the obser-
vation that different represen-
tations of the visual sensory
input vary on different time
scales. Our visual environ-
ment itself is rather stable. It
varies on a time scale of sec-
onds.

The primary sensory signal on
the hand, e.g. responses of
single receptors in our retina
or the gray value of a single
pixel of a CCD camera, vary
on a faster time scale of mil-
liseconds, simply as a conse-
quence of the very small recep-
tive field sizes combined with
gaze changes or moving ob-
jects. As an example imagine
you are looking at a quietly
grazing zebra. As your eyes
scan the zebra, single recep-
tors rapidly change from black

to white and back again because of the stripes of the zebra. But the scenery itself does not change much.
Finally, your internal high-level representation of the environment changes on a similar time scale as the
environment itself, namely on a slow time scale. The brain is somehow able to extract the slowly varying
high-level representation from the quickly varying primary sensory input. The hypothesis of the slowness
learning principle is that the time scale itself provides the cue for this extraction. The idea is that if the
system manages to extract slowly varying features from the quickly varying sensory input, then there is a
good chance that the features are a good representation of the visual environment.

A number of people have worked along these lines. Slow feature analysis is within this tradition but differs

in some significant technical aspects from all previous approaches.
Figure: (Wiskott et al., 2011, Fig. 2, (©) CC BY 4.0, URL)7-2
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Optimization Problem
x(t)

y(t) = g(x(t))
X4
/\/‘\/\/v\/\ .r‘*\\‘\“"_w Y,
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O =l

S AVACVAYNAN
t

Given an input signal x(t).

Find an input-output function g(x) (e.g. polynomial of degree 2).

The function generates the output signal y(t) = g(x(t)).

This is done instantaneously.

The output signal should vary slowly, i.e. minimize (y?).

The output signal should carry much information, i.e. (y;) =0, (y7) =1,
and (yjyi) =0 Vj <.

40/48 (Wiskott & Sejnowski, 2002, Neural Comp. 14(4):715-770)

Slow feature analysis is based
on a clearcut optimization
problem. The goal is to find
input-output functions that
extract most slowly varying
features from a quickly vary-
ing input signal.

It is important that the func-
tions are instantaneous, i.e.
one time slice of the output
signal is based on just one
time slice of the input signal
(marked in yellow). Otherwise
low-pass filtering would be a
valid but not particularly use-
ful method of extracting slow
output signals. Instantaneous
functions also make the sys-
tem fast after training, as is
important in visual process-
ing, for instance. It is also
possible to take a few input
time slices into account, e.g.
to make the system sensitive

to motion or to process scalar input signals with a fast dynamics on a short time scale. However, low-pass

filtering should never be the main method by which slowness is achieved.

Without any constraints, the optimal but not very useful output signal would be constant. We thus impose
the constraints of unit variance (y?) = 1 and, for mathematical convenience, zero mean (y;) = 0. To make
different output signal components represent different information, we impose the decorrelation constraint
(yjyi) = 0. Without this constraint, all output components would typically be the same. Notice that the
constraint is asymmetric, later components have to be uncorrelated to earlier ones but not the other way
around. This induces an order. The first component is the slowest possible one, the second component is
the next slowest one under the constraint of being uncorrelated to the first, the third component is the next

slowest one under the constraint of being uncorrelated to the first two, etc.
Figure: (Wiskott et al., 2011, Fig. 1, ©) CC BY 4.0, URL)"3
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Hierarchical Model

linear regression classifier

512 units

6x6 x 32 units

14x14 x 32 units

30x30 x 32 units

155x155 pixels

(Franzius, Wilbert, & Wiskott, 2011, Neural Computation 23(9):2289-2323)
cf. (Wallis & Rolls, 1997, Progress in Neurobiol. 51(2):167-194)
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The model is a hierarchical
network of SFA modules, each
one realizing polynomials of
degree two. The input image
has a size of 155 x 155 pix-
els. The first layer has an
array of 30 x 30 SFA mod-
ules with overlapping recep-
tive fields. Each of these mod-
ules has 32 units, i.e. it ex-
tracts the 32 most slowly vary-
ing features, which feed into
the next layer of 14 x 14 mod-
ules, again with overlapping
receptive fields. Such con-
vergent hierarchical process-
ing proceeds up to the top of
the network. Overall the net-
work realizes polynomials of
degree 16 and extracts the 512
most slowly varying features.
The output is later used for
linear regression or to train a
classifier.
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Stimuli - Fish

S 9 V & >&
%batw

‘? m —* untrained object

(models taken from toucan.web.infoseek.co.jp/3DCG/3ds/FishModelsE.html)

SFA-training with 15 'old’ objects.

Random walk in x-position, y-position, scale, and in-depth rotation.
10,000 data points per object.

Additional data for 10 'new’ objects, after SFA-training.

Only grayscale images are used in the experiments.

(Franzius, Wilbert, & Wiskott, 2011, Neural Computation 23(9):2289-2323)
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Classification Results

test images of the 10 new objects
FDA projection (test data)

| |m obj. 16
m obj. 17
m obj. 18
j. 19
20
21
22
23
24
25

2nd component

m obj.
m obj.
- | m obj.
m obj.
m obj.
m obj.

- L 1 L L L
4—2 -1 0 1 2

1st component

Performance of Gaussian classifier across position, scale, and in-depth
rotation angle: 97.08%, 97.81%, and 95.41% on 15 old, 10 new, and all
25 objects, respectively.

(Franzius, Wilbert, & Wiskott, 2011, Neural Computation 23(9):2289-2323)
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One stimulus set is a set
of different fish, sharks, and
whales, rendered in 3D. They
are shown at different posi-
tions, scales, and in-depth ro-
tation angles. Fifteen objects
were used for training the net-
work, ten new ones for testing.
Color was not used, because
it would simplify the task too
much.

A  Gaussian classifier was
trained on the 512 output
components to classify images
of the fish at different posi-
tions, scales, and in-depth ro-
tation angles with recognition
rates of 95% and up. The scat-
ter plot shows the projection
of the output onto the first two
Fisher discriminants. It can
be seen how the data cluster
according to object identity.



Regression Results - Scale

test images of 1 new object
obj. 16 (test data)

1.2— :

regression value

N ! I L L L
02 0.0 0.2 0.4 0.6 0.8 1.0

reference value

Regression on 50% of one new object, test on remaining 50%.

(green: all data points; red: mean; gray: + one standard deviation)
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When we present an image
of a fish to the network, the
SFA output allows us to de-
termine the identity of the fish

rendered output of with a Gaussian classifier and
classifier and regression estimate its position, scale,
and in-depth rotation angle
by linear regression. This es-
timated information can be
used to render a new image
of a fish. Ideally the ren-
dered image should be iden-
tical to the one presented to

Animated Results

test input image

e e ¢l ';"1 ST .4 "'1 the network. This animation
illustrates the performance of
the network by comparing the
original image (left) with the
newly rendered one (right) for
many different fish images.

46/48 (Franzius, Wilbert, & Wiskott, 2011, Neural Computation 23(9):2289-2323)
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Stimuli - Textured Sphere Clusters

SFA-training with 5 'old’ objects.

Random walk in x-position, y-position plus, in-depth and in-plane

rotation angle.

10,000 data points per object.

Additional data for 5 'new’ objects, after SFA-training.

Only grayscale images are used in the experiments.

(Franzius, Wilbert, & Wiskott, 2011, Neural Computation 23(9):2289-2323)
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Animated Results

test input image

rendered output of
classifier and regression

(Franzius, Wilbert, & Wiskott, 2011, Neural Computation 23(9):2289-2323)

29

When we present an image of
a sphere object to the net-
work, the SFA output allows
us to determine the identity
of the object with a Gaus-
sian classifier and estimate its
position and in-plane as well
as in-depth rotation angle by
linear regression.  This es-
timated information can be
used to render a new im-
age of a sphere object. Ide-
ally the rendered image should
be identical to the one pre-
sented to the network. This
animation illustrates the per-
formance of the network by
comparing the original image
(left) with the newly rendered
one (right) for many different
sphere-object images.
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