
Vorkurs WS25/26 – Exercise – Principles of Object-Oriented Programming Monday, 06.10.2025

Exercise 1: Conversion Table (Recap)

As a recap of last week’s topics, you have to program a Conversion Table for Celsius and Fahrenheit
values! The difficulty lies in writing a method for converting from Celsius to Fahrenheit and determining
the correct scaling for displaying the values.

A source code for the class CelsiusFahrenheit is given and must be completed and adapted at
various points.

1 import static java.lang.Math.round;
2 public class CelsiusFahrenheit {
3
4 // Add missing method here
5
6 public static void main(String[] args) {
7 System.out.println("Celsius Fahrenheit Converter");
8 System.out.println("============================");
9 System.out.println("Celsius \t Fahrenheit");

10
11 for (int c = 5; c < 20; c++) {
12
13 System.out.println(c + "\t" + celsiusFahrenheit(c));
14 }
15
16 }
17 }

The following output is expected:

1 Celsius-Fahrenheit-Konverter
2 ============================
3 Celsius Fahrenheit
4 5 41
5 6 43
6 7 45
7 8 46
8 9 48
9 10 50

Prof. Dr. Yannic Noller (yannic.noller@rub.de) | Software Quality @ RUB 1

mailto:yannic.noller@rub.de


Vorkurs WS25/26 – Exercise – Principles of Object-Oriented Programming Monday, 06.10.2025

Exercise 2: Racing Car Game

We are going to create a simpleCarRacingGame. First we create a classRacingCarwith the following
attributes:

• racer stores the name of the driver. This attribute must be a non-empty string and should
be initialized when the object is instantiated.

• speed stores the speed of the car. This attribute can only contain non-negative integer values
and must be less than or equal to a maximum speed.

• pos is an integer that specifies the position of the car and can only have non-negative values.

Each car also has the following additional attributes:

• maxSpeed, which specifies the maximum speed the car can have. This attribute should be
initialized when the object is instantiated.

• finish, which stores the target distance that the car must travel. It should be set to -1 during
initialization.

The class has the following methods:

• start(initSpeed, finishDistance): sets the speed of the car to an initial value, sets
the target distance to the passed value and also sets the position of the car to 0.

• race(acceleration): takes an integer value for the acceleration; first adjusts the speed of
the car and then updates the position of the car.

• isFinished(): calculates a Boolean value (true or false) and indicates whether the car
has reached the finish line.

Now your tasks:

1. Create a Class Diagram to match the textual description. Discuss with the person sitting next to
you.

2. Implement the class! Use the program code provided as a template. The mainmethod must be
executable without errors.

Prof. Dr. Yannic Noller (yannic.noller@rub.de) | Software Quality @ RUB 2

mailto:yannic.noller@rub.de


Vorkurs WS25/26 – Exercise – Principles of Object-Oriented Programming Monday, 06.10.2025

Exercise 3: Savings Account

The task is to implement the transactionswithdrawmoney anddepositmoney as well asdisplay account
balance in a program. If the account balance is below 0 Euro, a warning is to be issued.

1. Design and implement a class Sparbuch that provides the appropriate methods for these
transactions. Make sure that your class Sparbuch can be integrated into the already provided
class Bankautomat. The Bankautomat class serves as the main program and provides an
info screen for interaction with the user.

2. The class Bankautomat currently only asks for one option and then terminates the program.
Can you extend the program so that it stays in the menu until the user selects the “Exit” option?

3. (Bonus) Currently, things can still go wrong if the user does not adhere to the expected input
formats. Test the program with different inputs and try to implement the Bankautomat class
more robustly.

4. (Bonus) When the program is terminated, the current account balance is lost. How could this be
solved?

Prof. Dr. Yannic Noller (yannic.noller@rub.de) | Software Quality @ RUB 3

mailto:yannic.noller@rub.de

	Exercise 1: Conversion Table (Recap)
	Exercise 2: Racing Car Game
	Exercise 3: Savings Account

