
Cryptography
Prep-course, 9/30/25 

Eike Kiltz

Slide deck based on Nadim’s Applied cryptography course: https://appliedcryptography.page/ 
Licensed under: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International 
(https://creativecommons.org/licenses/by-nc-sa/4.0/)



Cryptography in Bochum
• Asymmetric cryptography 
• Cryptanalysis 
• Cryptographic engineering 
• Symmetric cryptography



Defining cryptography

What is Cryptography?

“The science of enabling secure and pri-
vate computation, communication, veri-
fication, and delegation in the presence
of untrusted parties, adversarial behavior,
and mutually distrustful participants.”

Source: Serious Cryptography, 2nd Edition
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Pull out your phone!

Let’s count the cryptographic operations
happening right now:
• WiFi connection (WPA3)
• Cellular connection (5G AES)
• App notifications (TLS)
• Face/Touch ID (Secure Enclave)
• Background app refreshes

Real-time calculation
• Average smartphone: 100+ crypto
operations/second

• In this 75-minute class: 450,000+
operations

• By end of semester: Billions of
operations

You’re already a crypto user!
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Cryptography is everywhere

• Banking
• Buying stuff from the store
• Any digital payment system
• Messaging (WhatsApp, Signal,
iMessage, Telegram)

• Voice calls
• Government and military systems
• SSH
• VPN access
• Visiting most websites (HTTPS)

• Disk encryption
• Cloud storage
• Video conferencing
• Unlocking your (newer) car
• Identity card systems
• Ticketing systems
• DRM solutions
• Private contact discovery
• Cryptocurrencies
• That Apple Photos feature that
detects similar photos
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Cryptographic building blocks

Components
• Cryptography manifests as a set of
primitives, from which we build
protocols intended to accomplish
well-defined security goals.

• Primitives: AES, RSA, SHA-2, DH…
• Protocols: TLS, Signal, SSH, FileVault
2, BitLocker…

Examples
• AES: Symmetric encryption

• Enc(𝑘,𝑚) = 𝑐, Dec(𝑘, 𝑐) = 𝑚.
• SHA-2: Hash function

• H(𝑚) = ℎ.
• Diffie-Hellman: Public key agreement

• Allows two parties to agree on a
secret key 𝑘.
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Cryptographic building blocks

Security goals
• Confidentiality: Data exchanged
between Client and Server is only
known to those parties.

• Authentication: If Server receives
data from Client, then Client sent it to
Server.

• Integrity: If Server modifies data
owned by Client, Client can find out.

Examples
• Confidentiality: When you send a
private message on Signal, only you
and the recipient can read the
content.

• Authentication: When you receive an
email from your boss, you can verify it
actually came from them.

• Integrity: Your computer can verify
that software update downloads
haven’t been tampered with during
transmission.
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Security goals: more examples

• TLS (HTTPS) ensures that data exchanged between the client and the server is
confidential and that parties are authenticated.

• Allows you to log into gmail.com without your ISP learning your password.
• FileVault 2 ensures data confidentiality and integrity on your MacBook.

• Prevents thieves from accessing your data if your MacBook is stolen.
• Signal andWhatsApp implement post-compromise security, an advanced
security goal.

• Allows a conversation to “heal” in the event of a temporary key compromise.
• More on that later in the course.
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Themagic of cryptography

Cryptography lets us achieve what seems impossible

• Secure communication over insecure channels
• Prove information is true without revealing it
• Proof of computation without redoing it
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Hard problems

• Cryptography is largely about equating the security of a system to the difficulty
of solving a math problem that is thought to be computationally very expensive.

• With cryptography, we get security systems that we can literally mathematically
prove as secure (under assumptions).

• Also, this allows for actual magic.
• Alice and Bob meet for the first time in the same room as you.
• You are listening to everything they are saying.
• Can they exchange a secret without you learning it?
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TheModulo Operation

• 𝑎 mod 𝑛 gives the remainder when dividing 𝑎 by 𝑛
• Result is always in {0, 1,… , 𝑛 − 1}
• Even for negative numbers!

21 mod 7 = 0
20 mod 7 = 6

−20 mod 7 = 1 (not -6!)

• Think: “𝑎 is (𝑎 mod 𝑛)more than a multiple of 𝑛”
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Time for actual magic

Setup
• Public parameters: 𝑝 = 13, 𝑔 = 2
• Alice picks secret: 𝑎 = 5
• Bob picks secret: 𝑏 = 7

Public Exchange
• Alice computes: 𝐴 = 𝑔𝑎 mod 𝑝 = 6
• Bob computes: 𝐵 = 𝑔𝑏 mod 𝑝 = 11
• Alice sends 𝐴 = 6 to Bob
• Bob sends 𝐵 = 11 to Alice

Shared Secret Computation
• Alice computes:
𝑠 = 𝐵𝑎 mod 𝑝 = 115 mod 13

• = 161051 mod 13 = 9
• Bob computes:
𝑠 = 𝐴𝑏 mod 𝑝 = 67 mod 13

• = 279936 mod 13 = 9
• Shared secret: 𝑠 = 9

Eavesdropper sees only:
• 𝑝 = 13, 𝑔 = 2, 𝐴 = 6, 𝐵 = 11
• (In the real world, 𝑝, 𝑎 and 𝑏 are much
larger numbers)
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Time for actual magic
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No known feasible computation

• The discrete logarithm problem:
• Given a finite cyclic group 𝐺, a generator 𝑔 ∈ 𝐺, and an element ℎ ∈ 𝐺, find the
integer 𝑥 such that 𝑔𝑥 = ℎ

• In more concrete terms:
• Let 𝑝 be a large prime and let 𝑔 be a generator of the multiplicative group ℤ∗

𝑝 (all
nonzero integers modulo 𝑝).

• Given:
• 𝑔 ∈ ℤ∗

𝑝, ℎ ∈ ℤ∗
𝑝

• Find 𝑥 ∈ {0, 1,… ,𝑝 − 2} such that 𝑔𝑥 ≡ ℎ (mod 𝑝)
• This problem is believed to be computationally hard when 𝑝 is large and 𝑔 is a
primitive root modulo 𝑝.

• “Believed to be” = we don’t know of any way to do it that doesn’t take forever, unless
we have a strong, stable quantum computer (Shor’s algorithm)
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Signal’s double ratchet: DH everywhere

• Initial key exchange: Uses X3DH (Extended Triple DH)
• Combines three DH key exchanges for security.
• Works even when recipient is offline (“asynchronous”
protocol).a

• Ongoing communication: Uses Double Ratchet
• New DH key exchange for every message!
• Provides “forward secrecy” and “post-compromise
security”.

• If your phone gets compromised today, yesterday’s
messages remain secure.

• If your phone recovers from compromise, tomorrow’s
messages are secure again.

aEverything on this slide will be covered in much more detail later in the course.

Signal uses DH key exchange
dozens, hundreds of times per

conversation.
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Hard problems

Asymmetric Primitives
• Diffie-Hellman, RSA, ML-KEM, etc.
• “Asymmetric” because there is a
“public key” and a “private key” for
each party.

• Algebraic, assume the hardness of
mathematical problems (as seen just
now.)

Symmetric Primitives
• AES, SHA-2, ChaCha20, HMAC…
• “Symmetric” because there is one
secret key.

• Not algebraic but unstructured, but
on their understood resistance to 𝑛
years of cryptanalysis.

• Can act as substitutes for
assumptions in security proofs!

• Example: hash function assumed to
be a “random oracle”
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Symmetric primitive example: hash functions

Hash Function Properties

• Takes input of any size
• Produces output of fixed size
• Is deterministic (same input→ same

output)
• Even a tiny change in input creates

completely different output
• Is efficient to compute

SHA256(hello) =
2cf24dba5fb0a30e26e83b2ac5
b9e29e1b161e5c1fa7425e7304
3362938b9824

SHA256(hullo) =
7835066a1457504217688c8f5d
06909c6591e0ca78c254ccf174
50d0d999cab0

Note: One character change→
completely different hash!
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Expected properties of a hash function

• Collision resistance: computationally
infeasible to find two different inputs
producing the same hash.

• Preimage resistance: given the output of a
hash function, it is computationally infeasible
to reconstruct the original input.

• Second preimage resistance: given an input
and an output, it’s computationally infeasible
to find another different input producing the
same output.

SHA-2 compression function. Source:
Wikipedia
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Hash functions: what are they good for?

• Data integrity verification: Hash a file. Later hash it again and compare hashes
to check if the file has changed, suffered storage degradation, etc.

• Proof of work: Server asks client to hash something a lot of times before they
can access some resource. Useful for anti-spam, Bitcoin mining, etc.

• Zero knowledge proofs: time for more actual magic
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Time for more actual magic

• Zero-knowledge proofs allow you to prove
that you know a secret without revealing any
information about it.

• They built “zero-knowledge virtual machines”
where you can execute an entire program that
runs as a zero-knowledge proof.

• ZKP battleship game: server proves to the
players that its output to their battleship
guesses is correct, without revealing any
additional information (e.g. ship location).

Battleship board game. Source: Hasbro
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What about encryption?

• Symmetric primitive of choice for encryption:
AES.

• Not that far off in terms of design process
from hash functions, but:

• AES is a PRP (pseudorandom permutation)
• HMAC-SHA256 is a PRF (pseudorandom
function) AES’s SubBytes operation. Source:

Wikipedia
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AES is a block cipher

• AES takes a 16-byte input, produces a 16-byte output.
• Key can be 16, 24 or 32 bytes.
• OK, so what if we want to encrypt more than 16 bytes?
• Proposal: split the plaintext into 16 byte chunks, encrypt each of them with the
same key.
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Block cipher examples

What we start with What we want What we actually get
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Block ciphermodes of operation

Source: Wikipedia
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Thinking about secrecy

plaintext𝐿 Enc Dec 𝐿
ciphertext 𝑀

Source: The Joy of Cryptography
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Thinking about secrecy

• Keep the whole design secret?
• “Advantages”:

• Attacker doesn’t know how our
cipher (or system, more generally,)
works.

• Disadvantages:
• Figuring out how the thing works

might mean a break.
• Can’t expose cipher to scrutiny.
• Everyone needs to invent a cipher.

plaintext𝐿 Enc Dec 𝐿
ciphertext 𝑀

Source: The Joy of Cryptography
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Kerckhoff’s principle

• “A cryptosystem should be secure even if everything about the system, except
the key, is public knowledge.” — Auguste Kerckhoffs, 1883

• Why it matters:
• No “security through obscurity”
• The key is the only secret: the rest can be audited, tested, trusted
• Encourages open standards and peer review
• If your system’s security depends on nobody knowing how it works, it’s not secure.
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Thinking about secrecy

key 𝐿

plaintext𝑀 Enc Dec 𝑀
ciphertext 𝑁

Concentrate all the need for secrecy in the key!
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Thinking about secrecy

• Cipher can be scrutinized, used by
anyone.

• Design can be shown to hold so long
as the key is secret.

• This is how virtually all cryptography
is designed today.

key 𝐿

plaintext𝑀 Enc Dec 𝑀
ciphertext 𝑁

Source: The Joy of Cryptography
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One-time pad
First look at a symmetric cipher

Enc(𝐾,𝑀):
𝐶 ≔ 𝐾 ⊕𝑀
return 𝐶

Dec(𝐾, 𝐶):
𝑀 ≔ 𝐾 ⊕ 𝐶
return𝑀
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XOR (Exclusive OR) operation

A B A⊕ B
0 0 0
0 1 1
1 0 1
1 1 0

Table: Truth table for XOR operation

• XOR returns 1 when inputs differ
• XOR returns 0 when inputs are the same
• Key property: 𝑥 ⊕ 𝑥 = 0 and 𝑥 ⊕ 0 = 𝑥
• Self-inverse: (𝑀 ⊕ 𝐾) ⊕ 𝐾 = 𝑀

A B

𝐴⊕ 𝐵
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One-time pad
First look at a symmetric cipher

(We’re encoding the message and key as bits)
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One-time pad
First look at a symmetric cipher

(We’re encoding the message and key as bits)
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One-time pad
Correctness proof

• ∀(𝑛 > 0, 𝐾 ∈ {0, 1}𝑛, 𝑀 ∈ {0, 1}𝑛), Dec(𝐾, Enc(𝐾,𝑀)) = 𝑀
• For all positive 𝑛, any key of 𝑛 bits and message of 𝑛 bits will decrypt back to the
same plaintext if encrypted into a ciphertext.

• Proof:

Dec(𝐾, Enc(𝐾,𝑀)) = Dec(𝐾, 𝐾 ⊕𝑀)
= 𝐾 ⊕ (𝐾 ⊕𝑀)
= (𝐾 ⊕ 𝐾) ⊕𝑀
= 0𝑛 ⊕𝑀
= 𝑀
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One-time pad
How do we prove security?

• When we prove security, we prove
what is or isn’t possible by the
attacker calling Attack(𝑀).

victim:
𝐿 ! {0, 1}𝐿

Enc
adversary

𝐿

𝑀

𝑁

Source: The Joy of Cryptography
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One-time pad
How do we prove security?

• “Victim” chooses their key.
• Fresh key for each message (each

key used only once)
• This means output will differ even if

same plaintext is input twice by
adversary

• Adversary chooses the message and
receives the ciphertext.

• We say that the adversary has access
to an encryption oracle.

victim:
𝐿 ! {0, 1}𝐿

Enc
adversary

𝐿

𝑀

𝑁

Source: The Joy of Cryptography
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One-time pad
How do we prove security?

𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑦

attack(𝑀): // adversary chooses𝑀

𝐾 ↞ {0, 1}𝑛 // victim samples𝐾

𝐶 ≔ Enc(𝐾,𝑀) // victim encrypts

return 𝐶 // adversary sees𝐶

𝑀

𝐶
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One-time pad
How do we prove security?

• Generally: a cipher is secure if the
adversary can’t distinguish the
output of calls to 𝐴𝑇𝑇𝐴𝐶𝐾 from
random junk.

• Formally: For all positive integers 𝑛
and all choices of plaintext
𝑀 ∈ {0, 1}𝑛, the output of the
following subroutine is uniformly
distributed:

Attack(𝑀):
𝐾 ↞ {0, 1}𝑛

𝐶 ≔ 𝐾 ⊕𝑀
return 𝐶
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One-time pad
How do we prove security?

• If the key is random, the output will be uniformly
distributed!

• Suppose𝑀 = 01:
• 𝐾 = 00 is chosen with probability 1/4:
𝐶 = 𝐾 ⊕𝑀 = 00⊕ 01 = 01.

• 𝐾 = 01 is chosen with probability 1/4:
𝐶 = 𝐾 ⊕𝑀 = 01⊕ 01 = 00.

• 𝐾 = 10 is chosen with probability 1/4:
𝐶 = 𝐾 ⊕𝑀 = 10⊕ 01 = 11.

• 𝐾 = 11 is chosen with probability 1/4:
𝐶 = 𝐾 ⊕𝑀 = 11⊕ 01 = 10.

Attack(𝑀):
𝐾 ↞ {0, 1}𝑛

𝐶 ≔ 𝐾 ⊕𝑀
return 𝐶
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XOR (Exclusive OR) operation

A B A⊕ B
0 0 0
0 1 1
1 0 1
1 1 0

Table: Truth table for XOR operation

• XOR returns 1 when inputs differ
• XOR returns 0 when inputs are the same
• Key property: 𝑥 ⊕ 𝑥 = 0 and 𝑥 ⊕ 0 = 𝑥
• Self-inverse: (𝑀 ⊕ 𝐾) ⊕ 𝐾 = 𝑀

A B

𝐴⊕ 𝐵
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One-time pad
What’s so special about XOR?

• Let’s replace⊕ with ∧. What would happen?
• Output no longer uniform!

A B A ∧ B
0 0 0
0 1 0
1 0 0
1 1 1

Table: Truth table for AND operation

Attack(𝑀):
𝐾 ↞ {0, 1}𝑛

𝐶 ≔ 𝐾 ∧𝑀
return 𝐶
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One-time pad
How do we prove security?

• What if this is true only for𝑀 = 01?
• Fine, let’s pick any𝑀,𝐶 ∈ {0, 1}𝑛.
• What is Pr[Attack(M) = C]?
• Answer: Exactly when 𝐶 = Enc(𝐾,𝑀) = 𝐾 ⊕𝑀.
• …which occurs for exactly one 𝐾 .
• Since 𝐾 is chosen uniformly from {0, 1}𝑛, the
probability of choosing that 𝐾 is 1

2𝑛
.

Attack(𝑀):
𝐾 ↞ {0, 1}𝑛

𝐶 ≔ 𝐾 ⊕𝑀
return 𝐶
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One-time pad
From the adversary’s perspective…

Attack(𝑀):
𝐾 ↞ {0, 1}𝑛

𝐶 ≔ 𝐾 ⊕𝑀
return 𝐶

≊
(indistinguishable

from)

Junk(𝑀):
𝐶 ↞ {0, 1}𝑛

return 𝐶
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“Real or random?”
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One-time pad
What about (mod 𝑛)?

• Let’s replace⊕ with (mod 𝑛). What
would happen?

• Still good!
• Can you prove correctness and
security?

Attack(𝑀):
𝐾 ↞ ℤ𝑛
𝐶 ≔ (𝐾 +𝑀) (mod 𝑛)
return 𝐶
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